Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] added PyTorch Profiler #2315

Open
wants to merge 14 commits into
base: master
Choose a base branch
from
144 changes: 144 additions & 0 deletions ignite/handlers/pytorch_profiler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# coding: utf-8
import datetime
import os
from typing import Any, Callable, Union

import torch

import ignite.distributed as idist
from ignite.engine import Engine, Events


class PyTorchProfiler:
"""PyTorch Profiler for performance debugging.

The PyTorch profiler is a tool that collects both GPU hardware and PyTorch related
information, correlates them, performs automatic detection of bottlenecks in the model,
and generates recommendations on how to resolve these bottlenecks.

Examples:
.. code-block:: python

from ignite.handlers import PyTorchProfiler
sdesrozis marked this conversation as resolved.
Show resolved Hide resolved

trainer = ...
model = ...
optimizer = ...

pt_profiler = PyTorchProfiler(on_trace_ready="tensorboard", output_path="logs/train")
pt_profiler.attach(trainer)

# Get profiler results of time
pt_profiler.print_results()

# Save profiler result to CSV file (requires pandas)
pt_profiler.write_results()

Both these methods can also be used as the on_trace_ready function which gets called after trace is ready.

pt_profiler = PyTorchProfiler(on_trace_ready=profiler.write_to_file(10), output_path="logs/train")

.. versionadded:: 0.4.8
"""

def __init__(
self,
cuda_activity: bool = False,
on_trace_ready: Union[Callable[..., Any], str] = "tensorboard",
record_shapes: bool = False,
profile_memory: bool = False,
with_stack: bool = False,
with_flops: bool = False,
with_modules: bool = False,
output_path: str = None,
wait: int = 2,
warmup: int = 2,
active: int = 6,
repeat: int = 1,
) -> None:

self.activities = [torch.profiler.ProfilerActivity.CPU]
if cuda_activity and torch.cuda.is_available():
self.activities.append(torch.profiler.ProfilerActivity.GPU)

self.output_path = output_path

self.schedule = torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=repeat)

self.trace_handler = (
torch.profiler.tensorboard_trace_handler(self.output_path)
if on_trace_ready == "tensorboard"
else on_trace_ready
)

self.record_shapes = record_shapes
self.profile_memory = profile_memory
self.with_stack = with_stack
self.with_flops = with_flops
self.with_modules = with_modules

self.SORT_KEYS = {
"cpu_time",
"cuda_time",
"cpu_time_total",
"cuda_time_total",
"cpu_memory_usage",
"cuda_memory_usage",
"self_cpu_memory_usage",
"self_cuda_memory_usage",
"count",
}

def _profiler_create(self):
self._profiler = torch.profiler.profile(
Copy link
Contributor

@sdesrozis sdesrozis Jan 9, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we should check the PyTorch version and provide a clear error message if version < 1.8 ?

And this check would be associated to a specific test.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I didn't get how I should do this. In case the PyTorch version is <1.8 then I want all the tests to not run right?
So should I add a @pytest.mark.skipif in all the tests?

activities=self.activities,
schedule=self.schedule,
on_trace_ready=self.trace_handler,
record_shapes=self.record_shapes,
profile_memory=self.profile_memory,
with_stack=self.with_stack,
with_flops=self.with_flops,
)
self._profiler.__enter__()

def _exit_profiler(self):
self._profiler.__exit__(0, 0, 0)

def _profiler_step(self):
self._profiler.step()

def attach(self, engine: Engine,) -> None:
"""Attach the profiler to the engine.

Args:
engine: engine object.
"""
engine.add_event_handler(Events.EPOCH_STARTED, self._profiler_create)
engine.add_event_handler(Events.GET_BATCH_COMPLETED, self._profiler_step)
engine.add_event_handler(Events.EPOCH_COMPLETED, self._exit_profiler)

def get_results(self, n: int = -1, sort_key: str = "self_cuda_memory_usage", top_level_events_only=False):
if sort_key not in self.SORT_KEYS:
raise ValueError(
f" The sort_key {sort_key} is not accepted. Please choose a sort key from {self.SORT_KEYS}"
)

return self.profiler.key_averages().table(
sdesrozis marked this conversation as resolved.
Show resolved Hide resolved
sort_by=sort_key, row_limit=n, top_level_events_only=top_level_events_only
)

def write_results(self, n: int = -1, sort_key: str = "self_cuda_memory_usage", top_level_events_only=False):
try:
import pandas as pd
except ImportError:
raise RuntimeError("Need pandas to write results as files")

results_df = pd.DataFrame(self.get_results(n, sort_key, top_level_events_only))

now = datetime.now().strftime("%Y%m%d-%H%M%S")
file_name = f"{idist.backend()}_{now}.csv"

results_df.to_csv(os.path.join(self.output_path, file_name), index=False)

def print_results(self, n: int = -1, sort_key: str = "self_cuda_memory_usage", top_level_events_only=False):
print(self.get_results(n, sort_key, top_level_events_only))