-
Notifications
You must be signed in to change notification settings - Fork 76
Results Dictionary
LNov edited this page Jul 31, 2017
·
4 revisions
For a single target analysis, the analyse_single_target
method returns a results dictionary which looks like this:
In [1]: res
Out[1]:
{'current_value': (3, 5), # process id and sample of the current value
'max_lag_sources': 5, # lags specified by the user
'max_lag_target': 5,
'min_lag_sources': 1,
'omnibus_pval': 0.047619047619047616, # p-value of the omnibus test
'omnibus_sign': True, # significance of the omnibus test
'omnibus_te': 0.37424613847591426, # estimated omnibus TE
'options': {'cmi_calc_name': 'jidt_kraskov', # analysis opts provided by the user
'n_perm_max_seq': 21,
'n_perm_max_stat': 21,
'n_perm_min_stat': 21,
'n_perm_omnibus': 21},
'selected_vars_pval': array([ 0.04761905]), # indiv. p-values for selected source variables
'selected_vars_te': array([ 0.37424614]), # indiv. TE values for selected source variables
'selected_vars_full': [(3, 1), (3, 2), (3, 3), (0, 2)], # all selected variables, full set Z
'selected_vars_sources': [(0, 2)], # selected variables from the sources' past, Z_X
'selected_vars_target': [(3, 1), (3, 2), (3, 3)], # selected variables from the target's past, Z_Y
'sources_tested': [0, 1, 2, 4], # potential source processes entering the analysis
'target': 3, # target process
'tau_sources': 1, # tau used for defining the source candidate set
'tau_target': 1} # tau used for defining the target candidate set
For multiple targets analysis, the analyse_network
method returns a results dictionary containing one entry for each analysed target. Each entry contains a results dictionary for a single target, which looks like the dictionary above.
In [1]: res = network_analysis.analyse_network(data=dat)
In [2]: res.keys()
Out[2]: dict_keys([0, 1, 2, 3, 4, 'fdr'])
Additionally, the dictionary contains an entry 'fdr'
, which contains the results dictionary after FDR-correction over targets (Benjamini, 1995, J Royal Stat Soc B, 57(1)).