Skip to content

Releases: ppogg/YOLOv5-Lite

YOLOv5-Lite-v1.5

27 Dec 15:16
57297c9
Compare
Choose a tag to compare

update export.py to extract v5lite onnx model with mnne&mnnd (for mnn infer) head. @ppogg
update export.py to extract v5lite onnx model with end2end (for onnxruntime infer) head. @ppogg
repair export.py to extract v5lite onnx model with concat head. @ppogg
update the mnn sdk infer https://zhuanlan.zhihu.com/p/672633849
update the onnxruntime sdk infer (with end2end decode)

Thanks for all the contributors and user of YOLOv5-Lite!

YOLOv5-Lite-v1.4

05 Mar 14:32
Compare
Choose a tag to compare
  • update export.py to extract v5lite onnx model with concat head. @ppogg
  • add tensorrt inference sdk thanks for @ChaucerG
  • add onnxruntime inference sdk,thanks for @hpc203
  • add gcnet model , thanks for @315386775
  • undate yolo.py @ChaucerG @Alexsdfdfs @315386775
  • undate model.py @ppogg @Alexsdfdfs @315386775
    Now YOLOv5-Lite support android, ncnn, mnn, tnn, onnxruntime, tensorrt, openvino, tflite. May be the repo will support more in the future~
    Thanks for all the contributors of YOLOv5-Lite!

YOLOv5-Lite-v1.3

14 Oct 13:34
69745f4
Compare
Choose a tag to compare

add openvino demo
add v5lite-c.pt
add v5lite-c IR model link

YOLOv5-Lite-v1.2

14 Oct 13:21
082986a
Compare
Choose a tag to compare

add v5lite-g.pt
add mnn demo
add model zoo link

YOLOv5-Lite-v1.1

25 Aug 01:23
f9bd2c0
Compare
Choose a tag to compare
  • Remove some redundant code
  • Add the example of Android development
  • Release the first version of Android apk
  • Add lighter baseline
  • Add eval.py
  • Update baseline
# evaluate in 320×320:
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.208
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.362
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.206
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.049
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.197
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.373
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.339
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.368
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.122
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.597

# evaluate in 416×416:
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.244
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.413
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.246
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.076
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.244
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.401
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.238
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.380
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.412
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.181
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.448
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.626

# evaluate in 640×640:
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.271
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.457
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.274
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.297
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.422
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.460
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.497
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.616

YOLOv5ss-v1.0

24 Aug 03:30
e18095a
Compare
Choose a tag to compare

About
shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~