Skip to content

Read/Write AI Parquet Files to S3 Compatible Object Storage via Arrow & MinIO

License

Notifications You must be signed in to change notification settings

pgEdge/aifdw

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AIFDW

AI Foreign Data Wrapper for Read/Write Parquet files to S3 compatible Object Stores via MinIO

1. Installation

./pgedge install aifdw

2. Install dependent libraries

  • libarrow and libparquet: Confirmed version is 12.0.0 (required).
    Please refer to building guide.

  • AWS SDK for C++ (libaws-cpp-sdk-core libaws-cpp-sdk-s3): Confirmed version is 1.11.91 (required).
    Please refer to bulding guide

Attention!
We reccomend to build libarrow, libparquet and AWS SDK for C++ from the source code. We failed to link if using pre-compiled binaries because gcc version is different between arrow and AWS SDK.

3. Build and install parquet_s3_fdw

make install

or in case when PostgreSQL is installed in a custom location:

make install PG_CONFIG=/path/to/pg_config

It is possible to pass additional compilation flags through either custom CCFLAGS or standard PG_CFLAGS, PG_CXXFLAGS, PG_CPPFLAGS variables.

Usage

Load extension

CREATE EXTENSION parquet_s3_fdw;

Create server

CREATE SERVER parquet_s3_srv FOREIGN DATA WRAPPER parquet_s3_fdw;

If using MinIO instead of AWS S3, please use use_minio option for create server.

CREATE SERVER parquet_s3_srv FOREIGN DATA WRAPPER parquet_s3_fdw OPTIONS (use_minio 'true');

Create user mapping

You have to specify user name and password if accessing Amazon S3.

CREATE USER MAPPING FOR public SERVER parquet_s3_srv OPTIONS (user 's3user', password 's3password');

Create foreign table

Now you should be able to create foreign table from Parquet files. Currently parquet_s3_fdw supports the following column types (to be extended shortly):

Arrow type SQL type
INT8 INT2
INT16 INT2
INT32 INT4
INT64 INT8
FLOAT FLOAT4
DOUBLE FLOAT8
TIMESTAMP TIMESTAMP
DATE32 DATE
STRING TEXT
BINARY BYTEA
LIST ARRAY
MAP JSONB

Currently parquet_s3_fdw doesn't support structs and nested lists.

Following options are supported:

  • filename - space separated list of paths to Parquet files to read. You can specify the path on AWS S3 by starting with s3://. The mix of local path and S3 path is not supported;
  • dirname - path to directory having Parquet files to read;
  • sorted - space separated list of columns that Parquet files are presorted by; that would help postgres to avoid redundant sorting when running query with ORDER BY clause or in other cases when having a presorted set is beneficial (Group Aggregate, Merge Join);
  • files_in_order - specifies that files specified by filename or returned by files_func are ordered according to sorted option and have no intersection rangewise; this allows to use Gather Merge node on top of parallel Multifile scan (default false);
  • use_mmap - whether memory map operations will be used instead of file read operations (default false);
  • use_threads - enables Apache Arrow's parallel columns decoding/decompression (default false);
  • files_func - user defined function that is used by parquet_s3_fdw to retrieve the list of parquet files on each query; function must take one JSONB argument and return text array of full paths to parquet files;
  • files_func_arg - argument for the function, specified by files_func.
  • max_open_files - the limit for the number of Parquet files open simultaneously.
  • region - the value of AWS region used to connect to (default ap-northeast-1).
  • endpoint - the address and port used to connect to (default 127.0.0.1:9000).

Foreign table may be created for a single Parquet file and for a set of files. It is also possible to specify a user defined function, which would return a list of file paths. Depending on the number of files and table options parquet_s3_fdw may use one of the following execution strategies:

Strategy Description
Single File Basic single file reader
Multifile Reader which process Parquet files one by one in sequential manner
Multifile Merge Reader which merges presorted Parquet files so that the produced result is also ordered; used when sorted option is specified and the query plan implies ordering (e.g. contains ORDER BY clause)
Caching Multifile Merge Same as Multifile Merge, but keeps the number of simultaneously open files limited; used when the number of specified Parquet files exceeds max_open_files

GUC variables:

  • parquet_fdw.use_threads - global switch that allow user to enable or disable threads (default true);
  • parquet_fdw.enable_multifile - enable Multifile reader (default true).
  • parquet_fdw.enable_multifile_merge - enable Multifile Merge reader (default true).

Example:

CREATE FOREIGN TABLE userdata (
    id           int,
    first_name   text,
    last_name    text
)
SERVER parquet_s3_srv
OPTIONS (
    filename 's3://bucket/dir/userdata1.parquet'
);

Access foreign table

SELECT * FROM userdata;

Parallel queries

parquet_s3_fdw also supports parallel query execution (not to confuse with multi-threaded decoding feature of Apache Arrow).

Import

parquet_s3_fdw also supports IMPORT FOREIGN SCHEMA command to discover parquet files in the specified directory on filesystem and create foreign tables according to those files. It can be used as follows:

IMPORT FOREIGN SCHEMA "/path/to/directory"
FROM SERVER parquet_s3_srv
INTO public;

It is important that remote_schema here is a path to a local filesystem directory and is double quoted.

Another way to import parquet files into foreign tables is to use import_parquet_s3 or import_parquet_s3_explicit:

CREATE FUNCTION import_parquet_s3(
    tablename   text,
    schemaname  text,
    servername  text,
    userfunc    regproc,
    args        jsonb,
    options     jsonb)

CREATE FUNCTION import_parquet_s3_explicit(
    tablename   text,
    schemaname  text,
    servername  text,
    attnames    text[],
    atttypes    regtype[],
    userfunc    regproc,
    args        jsonb,
    options     jsonb)

The only difference between import_parquet_s3 and import_parquet_s3_explicit is that the latter allows to specify a set of attributes (columns) to import. attnames and atttypes here are the attributes names and attributes types arrays respectively (see the example below).

userfunc is a user-defined function. It must take a jsonb argument and return a text array of filesystem paths to parquet files to be imported. args is user-specified jsonb object that is passed to userfunc as its argument. A simple implementation of such function and its usage may look like this:

CREATE FUNCTION list_parquet_s3_files(args jsonb)
RETURNS text[] AS
$$
BEGIN
    RETURN array_agg(args->>'dir' || '/' || filename)
           FROM pg_ls_dir(args->>'dir') AS files(filename)
           WHERE filename ~~ '%.parquet';
END
$$
LANGUAGE plpgsql;

SELECT import_parquet_s3_explicit(
    'abc',
    'public',
    'parquet_srv',
    array['one', 'three', 'six'],
    array['int8', 'text', 'bool']::regtype[],
    'list_parquet_files',
    '{"dir": "/path/to/directory"}',
    '{"sorted": "one"}'
);

Features

  • Support SELECT of parquet file on local file system or Amazon S3.
  • Support INSERT, DELETE, UPDATE (Foreign modification).
  • Support MinIO access instead of Amazon S3.
  • Allow control over whether foreign servers keep connections open after transaction completion. This is controlled by keep_connections and defaults to on.
  • Support parquet_s3_fdw function parquet_s3_fdw_get_connections() to report open foreign server connections.

Schemaless mode

  • The feature will enable user to use schemaless feature:
    • No specific foreign foreign schema (column difinition) for each parquet file.
    • The schemaless foreign table has only one jsonb column to represent the data from the parquet file by following rule:
      • Jsonb Key: parquet column name.
      • Jsonb Value: parquet column data.
  • By use schemaless mode, there are several benefits:
    • Flexibility over data structure of parquet file: By merging all column data into one jsonb column, a schemaless foreign table can query any parquet file that has all column can be mapped with the postgres type.
    • No pre-defined foreign table schemas (column difinition). The lack of schema means that foreign table will query all column from parquet file — including those that user do not yet use.

Schemaless mode usage

  • Schemaless mode is enabled by schemaless option:

    • schemaless option is true: enable schemaless mode.
    • schemaless option is false: disable schemaless mode (We call it non-schemaless mode).
    • If schemaless option is not configured, default value is false.
    • schemaless option is supported in CREATE FOREIGN TABLE, IMPORT FOREIGN SCHEMA, import_parquet_s3() and import_parquet_s3_explicit().
  • Schemaless foreign table needs at least one jsonb column to represent data:

    • If there is more than 1 jsonb column, only one column is populated, all other columns are treated with NULL value.
    • If there is no jsonb column, all column are treated with NULL value.
    • Example:
      CREATE FOREIGN TABLE example_schemaless (
        id int,
        v jsonb
      ) OPTIONS (filename '/path/to/parquet_file', schemaless 'true');
      SELECT * FROM example_schemaless;
      id |                                                                v                                                                
      ----+---------------------------------------------------------------------------------------------------------------------------------
          | {"one": 1, "six": "t", "two": [1, 2, 3], "five": "2018-01-01", "four": "2018-01-01 00:00:00", "seven": 0.5, "three": "foo"}
          | {"one": 2, "six": "f", "two": [null, 5, 6], "five": "2018-01-02", "four": "2018-01-02 00:00:00", "seven": null, "three": "bar"}
      (2 rows)
  • Create foreign table: With IMPORT FOREIGN SCHEMA, import_parquet_s3() and import_parquet_s3_explicit(), foreign table will create with fixed column difinition like below:

    CREATE FOREIGN TABLE example (
      v jsonb
    ) OPTIONS (filename '/path/to/parquet_file', schemaless 'true');
  • Query data:

    -- non-schemaless mode
    SELECT * FROM example;
     one |    two     | three |        four         |    five    | six | seven 
    -----+------------+-------+---------------------+------------+-----+-------
       1 | {1,2,3}    | foo   | 2018-01-01 00:00:00 | 2018-01-01 | t   |   0.5
       2 | {NULL,5,6} | bar   | 2018-01-02 00:00:00 | 2018-01-02 | f   |      
    (2 rows)
    -- schemaless mode
    SELECT * FROM example_schemaless;
                                                                      v
    ---------------------------------------------------------------------------------------------------------------------------------
     {"one": 1, "six": "t", "two": [1, 2, 3], "five": "2018-01-01", "four": "2018-01-01 00:00:00", "seven": 0.5, "three": "foo"}
     {"one": 2, "six": "f", "two": [null, 5, 6], "five": "2018-01-02", "four": "2018-01-02 00:00:00", "seven": null, "three": "bar"}
    (2 rows)
  • Fetch values in jsonb expression:

    • Use ->> jsonb arrow operator which return text type. User may cast type the jsonb expression to get corresponding data representation.
    • For example, v->>'col' expression of fetch value col will be column name col in parquet file and we call it schemaless variable or slvar.
      SELECT v->>'two', sqrt((v->>'one')::int) FROM example_schemaless;
        ?column?   |        sqrt        
      --------------+--------------------
      [1, 2, 3]    |                  1
      [null, 5, 6] | 1.4142135623730951
      (2 rows)
  • Some feature is different with non-schemaless mode

    • Rowgroup filter support: in schemaless mode, parquet_s3_fdw can support execute row group filter with some WHERE condition below:

      • slvar::type {operator} const. For example: (v->>'int64_col')::int8 = 100
      • const {operator} slvar ::type. For example: 100 = (v->>'int64_col')::int8
      • slvar::boolean is true/false. For example: (v->>'bool_col')::boolean is false
      • !(slvar::boolean). For example: !(v->>'bool_col')::boolean
      • Jsonb exist operator: ((v->>'col')::jsonb) ? element, (v->'col') ? element and v ? 'col'
      • The cast function must be mapped with the parquet column type, otherwise, the filter will be skipped.
    • To use presort column of parquet file, user must be:

      • define column name in sorted option same as non-schemaless mode
      • Use slvar instead of column name in the ORDER BY clause.
      • If the sorted parquet column is not a text column, please add the explicit cast to the mapped type of this column.
      • For example:
        CREATE FOREIGN TABLE example_sorted (v jsonb)
        SERVER parquet_s3_srv
        OPTIONS (filename '/path/to/example1.parquet /path/to/example2.parquet', sorted 'int64_col', schemaless 'true');
        EXPLAIN (COSTS OFF) SELECT * FROM example_sorted ORDER BY (v->>'int64_col')::int8;
                  QUERY PLAN           
        --------------------------------
        Foreign Scan on example_sorted
          Reader: Multifile Merge
          Row groups: 
            example1.parquet: 1, 2
            example2.parquet: 1
        (5 rows)
    • Support for arrow Nested List and Map: these type will be treated as nested jsonb value which can access by -> operator.
      For example:

      SELECT * FROM example_schemaless;
                                        v
      ----------------------------------------------------------------------------
      {"array_col": [19, 20], "jsonb_col": {"1": "foo", "2": "bar", "3": "baz"}}
      {"array_col": [21, 22], "jsonb_col": {"4": "test1", "5": "test2"}}
      (2 rows)
      
      SELECT v->'array_col'->1, v->'jsonb_col'->'1' FROM example3;
      ?column? | ?column? 
      ----------+----------
      20       | "foo"
      22       | 
      (2 rows)
    • Postgres cost for caculate (jsonb->>'col')::type is much larger than fetch column directly in non-schemaless mode, The query plan of schemaless mode can be different with non-schemaless mode in some complex query.

  • For other feature, schemaless mode works same as non-schemaless mode.

Write-able FDW

The user can issue an insert, update and delete statement for the foreign table, which has set the key columns.

Key columns

  • in non-schemaless mode: The key columns can be set while creating a parquet_s3_fdw foreign table object with OPTIONS(key 'true'):
CREATE FOREIGN TABLE userdata (
    id1          int OPTIONS(key 'true'),
    id2          int OPTIONS(key 'true'),
    first_name   text,
    last_name    text
) SERVER parquet_s3_srv
OPTIONS (
    filename 's3://bucket/dir/userdata1.parquet'
);
  • in schemaless mode The key columns can be set while creating a parquet_s3_fdw foreign table object with key_columns option:
CREATE FOREIGN TABLE userdata (
    v JSONB
) SERVER parquet_s3_srv
OPTIONS (
    filename 's3://bucket/dir/userdata1.parquet',
    schemaless 'true',
    key_columns 'id1 id2'
);
  • key_columns option can be use in IMPORT FOREIGN SCHEMA feature:
-- in schemaless mode
IMPORT FOREIGN SCHEMA 's3://data/' FROM SERVER parquet_s3_srv INTO tmp_schema
OPTIONS (sorted 'c1', schemaless 'true', key_columns 'id1 id2');
-- corresponding CREATE FOREIGN TABLE
CREATE FOREIGN TABLE tbl1 (
      v jsonb
) SERVER parquet_s3_srv
OPTIONS (filename 's3://data/tbl1.parquet', sorted 'c1', schemaless 'true', key_columns 'id1 id2');

-- in non-schemaless mode
IMPORT FOREIGN SCHEMA 's3://data/' FROM SERVER parquet_s3_srv INTO tmp_schema
OPTIONS (sorted 'c1', schemaless 'true', key_columns 'id1 id2');
-- corresponding CREATE FOREIGN TABLE
CREATE FOREIGN TABLE tbl1 (
      id1 INT OPTIONS (key 'true'),
      id2 INT OPTIONS (key 'true'),
      c1  TEXT,
      c2  FLOAT
) SERVER parquet_s3_srv
OPTIONS (filename 's3://data/tbl1.parquet', sorted 'c1');

insert_file_selector option

User defined function signature that is used by parquet_s3_fdw to retrieve the target parquet file on INSERT query:

CREATE FUNCTION insert_file_selector_func(one INT8, dirname text)
RETURNS TEXT AS
$$
    SELECT (dirname || '/example7.parquet')::TEXT;
$$
LANGUAGE SQL;

CREATE FOREIGN TABLE example_func (one INT8 OPTIONS (key 'true'), two TEXT)
SERVER parquet_s3_srv
OPTIONS (
    insert_file_selector 'insert_file_selector_func(one, dirname)',
    dirname '/tmp/data_local/data/test',
    sorted 'one');
  • insert_file_selector function signature spec:
    • Syntax: [function name]([arg name] , [arg name] ...)
    • Default return type is TEXT (full paths to parquet file)
    • [arg name]: must be foreign table column name or dirname
    • args value:
      • dirname arg: value of dirname option.
      • column args: get from inserted slot by name.

Sorted columns:

parquet_s3_fdw supports keeping the sorted column still sorted in the modify feature.

Parquet file schema:

Basically, the parquet file schema is defined according to a list of column names and corresponding types, but in parquet_s3_fdw's scan, it assumes that all columns with the same name have the same type. So, in modify feature, this assumption will be use also.

Type mapping from postgres to arrow type:

  • primitive type mapping:

    SQL type Arrow type
    BOOL BOOL
    INT2 INT16
    INT4 INT32
    INT8 INT64
    FLOAT4 FLOAT
    FLOAT8 DOUBLE
    TIMESTAMP/TIMESTAMPTZ TIMESTAMP
    DATE DATE32
    TEXT STRING
    BYTEA BINARY
  • Default time precision for arrow::TIMESTAMP is microsecond an in UTC timezone.

  • LIST are created by its element type, just support primitive type for element.

  • MAP are created by its jsonb element type:

    jsonb type Arrow type
    text STRING
    numeric FLOAT8
    boolean BOOL
    null STRING
    other types STRING
  • In schemaless mode:

    • The mapping for primitive jsonb type is same as MAP in non-schemaless mode.
    • For first nested jsonb in schemaless mode:
      jsonb type Arrow type
      array LIST
      object MAP
    • Element type of LIST and MAP is same as MAP type in non-schemaless mode.

INSERT

-- non-schemaless mode
CREATE FOREIGN TABLE example_insert (
    c1 INT2 OPTIONS (key 'true'),
    c2 TEXT,
    c3 BOOLEAN
) SERVER parquet_s3_srv OPTIONS (filename 's3://data/example_insert.parquet');

INSERT INTO example_insert VALUES (1, 'text1', true), (2, DEFAULT, false), ((select 3), (select i from (values('values are fun!')) as foo (i)), true);
INSERT 0 3

SELECT * FROM example_insert;
 c1 |       c2        | c3 
----+-----------------+----
  1 | text1           | t
  2 |                 | f
  3 | values are fun! | t
(3 rows)

-- schemaless mode
CREATE FOREIGN TABLE example_insert_schemaless (
    v JSONB
) SERVER parquet_s3_srv OPTIONS (filename 's3://data/example_insert.parquet', schemaless 'true', key_column 'c1');

INSERT INTO example_insert_schemaless VALUES ('{"c1": 1, "c2": "text1", "c3": true}'), ('{"c1": 2, "c2": null, "c3": false}'), ('{"c1": 3, "c2": "values are fun!", "c3": true}');

SELECT * FROM example_insert_schemaless;
                       v                       
-----------------------------------------------
 {"c1": 1, "c2": "text1", "c3": "t"}
 {"c1": 2, "c2": null, "c3": "f"}
 {"c1": 3, "c2": "values are fun!", "c3": "t"}
(3 rows)
  • Select file to insert:
    • In case, option insert_file_selector exists, target file is the result of this function.
      • If target file does not exist, create new file with the same name of target file.
      • If target file exists, but its schema does not match with list columns of insert record, an error message will be raised.
    • In case, option insert_file_selector does not exist:
      • target file is the first file whose schema matches the inserted record (all columns of inserted record exist in the target file).
      • If no file that meets its schema matches the columns of insert record and dirname option has specified. Creating new file with name format: [foreign_table_name]_[date_time].parquet
      • Otherwise, an error message will be raised.
  • The new file schema:
    • In non-schemaless mode, the new file will have all columns existed in foreign table.
    • In schemaless mode, the new file will have all column specify in jsonb value.
    • Column information:

UPDATE/DELETE

-- non-schemaless mode
CREATE FOREIGN TABLE example (
    c1 INT2 OPTIONS (key 'true'),
    c2 TEXT,
    c3 BOOLEAN
) SERVER parquet_s3_srv OPTIONS (filename 's3://data/example.parquet');

SELECT * FROM example;
 c1 |       c2        | c3 
----+-----------------+----
  1 | text1           | t
  2 |                 | f
  3 | values are fun! | t
(3 rows)

UPDATE example SET c3 = false WHERE c2 = 'text1';
UPDATE 1

SELECT * FROM example;
 c1 |       c2        | c3 
----+-----------------+----
  1 | text1           | f
  2 |                 | f
  3 | values are fun! | t
(3 rows)

DELETE FROM example WHERE c1 = 2;
DELETE 1

SELECT * FROM example;
 c1 |       c2        | c3 
----+-----------------+----
  1 | text1           | f
  3 | values are fun! | t
(2 rows)

-- schemaless mode
CREATE FOREIGN TABLE example_schemaless (
    v JSONB
) SERVER parquet_s3_srv OPTIONS (filename 's3://data/example.parquet', schemaless 'true', key_columns 'c1');

SELECT * FROM example_schemaless;
                       v                       
-----------------------------------------------
 {"c1": 1, "c2": "text1", "c3": "t"}
 {"c1": 2, "c2": null, "c3": "f"}
 {"c1": 3, "c2": "values are fun!", "c3": "t"}
(3 rows)

UPDATE example_schemaless SET v='{"c3":false}' WHERE v->>'c2' = 'text1';
UPDATE 1

SELECT * FROM example_schemaless;
                       v                       
-----------------------------------------------
 {"c1": 1, "c2": "text1", "c3": "f"}
 {"c1": 2, "c2": null, "c3": "f"}
 {"c1": 3, "c2": "values are fun!", "c3": "t"}
(3 rows)

DELETE FROM example_schemaless WHERE (v->>'c1')::int = 2;
DELETE 1

SELECT * FROM example_schemaless;
                       v                       
-----------------------------------------------
 {"c1": 1, "c2": "text1", "c3": "f"}
 {"c1": 3, "c2": "values are fun!", "c3": "t"}
(2 rows)

Limitations

  • Transaction is not supported.
  • Cannot create a single foreign table using parquet files on both file system and Amazon S3.
  • The 4th and 5th arguments of import_parquet_s3_explicit() function are meaningless in schemaless mode.
    • These arguments should be defined as NULL value.
    • If these arguments is not NULL value the WARNING below will occur:
      WARNING: parquet_s3_fdw: attnames and atttypes are expected to be NULL. They are meaningless for schemaless table.
      HINT: Schemaless table imported always contain "v" column with "jsonb" type.
      
  • schemaless mode does not support create partition table by CREATE TABLE parent_tbl (v jsonb) PARTITION BY RANGE((v->>'a')::int).
  • In modifying features:
    • parquet_s3_fdw modifies the parquet file by creating a modifiable cache data from the target parquet file and overwriting the old one:
      • Performance won't be good for large files.
      • When exact same file is modifying concurrently, the result would be inconsistent.
    • WITH CHECK OPTION, ON CONFLICT and RETURNING are not supported.
    • sorted columns only supports the following types: int2, int4, int8, date, timestamp, float4, float8.
    • key columns only supports the following types: int2, int4, int8, date, timestamp, float4, float8 and text.
    • key columns values must be unique, parquet_s3_fdw does not support checking for unique values for key columns, user must do that.
    • key columns only required for UPDATE/DELETE.

Contributing

Opening issues and pull requests on GitHub are welcome.

License

Copyright (c) 2021, TOSHIBA Corporation
Copyright (c) 2018 - 2019, adjust GmbH

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

See the LICENSE.md file for full details.

About

Read/Write AI Parquet Files to S3 Compatible Object Storage via Arrow & MinIO

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • PLpgSQL 78.9%
  • C++ 19.5%
  • Python 0.8%
  • C 0.6%
  • Shell 0.1%
  • Makefile 0.1%