Skip to content

Standalone benchmarks related to libparanumal capabilities

License

Notifications You must be signed in to change notification settings

paranumal/benchparanumal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

benchParanumal

benchParanumal contains several benchmark problems set out, or inspired by, the Center for Efficient Exascale Discretizations (CEED) Bake-off Problems.

How to compile benchParanumal

There are a couple of prerequisites for building benchParanumal;

  • MPI
  • OpenBlas

Installing MPI and OpenBlas can be done using whatever package manager your operating system provides.

OCCA is packaged with benchParanumal in a git submodule. Either clone with --recursive or run

git submodule init
git submoduel update

To build benchParanumal:

$ git clone --recursive https://github.com/paranumal/benchparanumal
$ cd benchparanumal
$ export LIBP_BLAS_DIR=</path/to/openblas>
$ make -j `nproc`

If your MPI supports GPU-aware RDMA functionality, you can optionally build benchParanumal with this support via:

$ make -j `nproc` --gpu-aware-mpi=true

How to run benchParanumal

benchParanumal contains two distinct types of tests:

  1. BK - Benchmark Kernels
  2. BP - Benchmark Problems

The usage of each benchmark, outside of the provide run scripts, can be found with the -h option. For example:

$ mpirun -np 1 ./BK/BK1/BK1 -h

Name:     [THREAD MODEL]
CL keys:  [-m, --mode]
Description: OCCA's Parallel execution platform
Possible values: { Serial, OpenMP, CUDA, HIP, OpenCL }

Name:     [PLATFORM NUMBER]
CL keys:  [-pl, --platform]
Description: Parallel platform number (used in OpenCL mode)

Name:     [DEVICE NUMBER]
CL keys:  [-d, --device]
Description: Parallel device number

Name:     [ELEMENT TYPE]
CL keys:  [-e, --elements]
Description: Type of mesh elements
Possible values: { Tri, Quad, Tet, Hex }

Name:     [BOX NX]
CL keys:  [-nx, --dimx]
Description: Number of elements in X-dimension per rank

Name:     [BOX NY]
CL keys:  [-ny, --dimy]
Description: Number of elements in Y-dimension per rank

Name:     [BOX NZ]
CL keys:  [-nz, --dimz]
Description: Number of elements in Z-dimension per rank

Name:     [POLYNOMIAL DEGREE]
CL keys:  [-p, --degree]
Description: Degree of polynomial finite element space
Possible values: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }

Name:     [VERBOSE]
CL keys:  [-v, --verbose]
Description: Enable verbose output
Possible values: { TRUE, FALSE }

Name:     [HELP]
CL keys:  [-h, --help]
Description: Print this help message

Here is an example large problem size that you can run on one GPU:

$ mpirun -np 1 ./BP/BP5/BP5 -m HIP -nx 24 -ny 24 -nz 24 -p 15 -v

Running on multiple GPUs can by done by passing a larger argument to np:

$ mpirun -np 4 ./BP/BP5/BP5 -m HIP -nx 24 -ny 24 -nz 24 -p 15 -v

Verifying correctness

To verify that the computation is correct, add the -v option to the command line. Example output towards the end of the run may look like this:

CG: it 96, r norm 1.405229334496e-04, alpha = 2.686587e+00
CG: it 97, r norm 1.375460859099e-04, alpha = 2.540830e+00
CG: it 98, r norm 1.198097786957e-04, alpha = 2.780510e+00
CG: it 99, r norm 1.108821042895e-04, alpha = 2.907639e+00
CG: it 100, r norm 9.086922290200e-05, alpha = 2.946219e+00
BP5: N, DOFs, elapsed, iterations, time per DOF, avg BW (GB/s), avg GFLOPs, DOFs*iterations/ranks*time
4, 68921, 0.0216, 100, 3.13e-07, 81.5, 49.8, 3.20e+08

The printed value of r norm at the end of 100 CG iterations should be small.

How to clean build objects

To clean the benchParanumal build objects:

$ make realclean

Please invoke make help for more supported options.

About

Standalone benchmarks related to libparanumal capabilities

Resources

License

Stars

Watchers

Forks

Packages

No packages published