-
Notifications
You must be signed in to change notification settings - Fork 125
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature] Make a qrcode-generator based on mmagic #135
Open
yayoyo66
wants to merge
2
commits into
open-mmlab:main
Choose a base branch
from
yayoyo66:qrcode-branch
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# Introduction | ||
|
||
I make a QR Code Generator by Stable Diffusion and Controlnet. | ||
|
||
Must set `mmagic/models/archs/wrapper.py` line 90: | ||
|
||
`self.model = module_cls.from_pretrained(from_pretrained,use_safetensors=True*args,**kwargs)` | ||
|
||
# Demo | ||
|
||
A simple demo is provided. | ||
|
||
```shell | ||
python demo/qrcode_inference_demo.py \ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. python qrcode_inference_demo.py |
||
--config controlnet-brightness.py \ | ||
--qrcode_img 'test.png' \ | ||
--prompt 'dreamlikeart, an zebra' \ | ||
--negative_prompt 'ugly, bad quality' \ | ||
--resize 440 640 \ | ||
--output_size 440 640 \ | ||
--num_inference_steps 50 \ | ||
--guidance_scale 7.5 \ | ||
--unet_model 'dreamlike-art/dreamlike-diffusion-1.0' \ | ||
--vae_model 'dreamlike-art/dreamlike-diffusion-1.0' \ | ||
--controlnet_model 'ioclab/control_v1p_sd15_brightness' \ | ||
--controlnet_conditioning_scale 0.7 \ | ||
--num_generated_img 5 \ | ||
--save_path 'output' | ||
``` | ||
|
||
The generated images will be save in `output/[num]_sample.png`. | ||
|
||
If the generated QR code is not recognizable, try increasing `controlnet_conditioning_scale`. | ||
|
||
One result display (using the parameters of the demo above)`qrcode_example.png`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# config for model | ||
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5' | ||
|
||
model = dict( | ||
type = 'ControlStableDiffusion', | ||
vae=dict( | ||
type='AutoencoderKL', | ||
from_pretrained=stable_diffusion_v15_url, | ||
subfolder='vae'), | ||
unet=dict( | ||
type='UNet2DConditionModel', | ||
subfolder='unet', | ||
from_pretrained=stable_diffusion_v15_url), | ||
text_encoder=dict( | ||
type='ClipWrapper', | ||
clip_type='huggingface', | ||
pretrained_model_name_or_path=stable_diffusion_v15_url, | ||
subfolder='text_encoder'), | ||
tokenizer=stable_diffusion_v15_url, | ||
controlnet=dict( | ||
type='ControlNetModel', | ||
attention_head_dim = 8, | ||
block_out_channels = [320,640,1280,1280], | ||
conditioning_embedding_out_channels=[16,32,96,256], | ||
controlnet_conditioning_channel_order="rgb", | ||
cross_attention_dim = 768, | ||
down_block_types = ["CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2D"], | ||
downsample_padding = 1, | ||
flip_sin_to_cos=True, | ||
freq_shift= 0, | ||
in_channels= 4, | ||
layers_per_block= 2, | ||
mid_block_scale_factor = 1, | ||
norm_eps= 1e-05, | ||
norm_num_groups= 32, | ||
only_cross_attention= False, | ||
resnet_time_scale_shift= "default", | ||
sample_size= 32, | ||
upcast_attention= False, | ||
use_linear_projection= False | ||
), | ||
scheduler=dict( | ||
type='DDPMScheduler', | ||
from_pretrained=stable_diffusion_v15_url, | ||
subfolder='scheduler'), | ||
test_scheduler=dict( | ||
type='DDIMScheduler', | ||
from_pretrained=stable_diffusion_v15_url, | ||
subfolder='scheduler'), | ||
data_preprocessor=dict(type='DataPreprocessor'), | ||
init_cfg=dict(type='init_from_unet')) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
|
||
import cv2 | ||
import numpy as np | ||
import mmcv | ||
from mmengine import Config | ||
from PIL import Image | ||
import os | ||
from argparse import ArgumentParser | ||
|
||
from mmagic.registry import MODELS | ||
from mmagic.utils import register_all_modules | ||
|
||
|
||
def parse_args(): | ||
parser = ArgumentParser() | ||
|
||
# input | ||
parser.add_argument( | ||
'--qrcode_img', type=str, default=None, help='Input QRcode image file.') | ||
parser.add_argument( | ||
'--prompt', type=str, default=None, help='Input prompt.') | ||
parser.add_argument( | ||
'--negative_prompt', type=str, default=None, help='Input negative prompt.') | ||
parser.add_argument( | ||
'--config', type=str, default=None, help='Input config.') | ||
|
||
# parameters | ||
parser.add_argument( | ||
'--resize', nargs='+', help='Resize the input QRcode image, must be a multiple of 8') | ||
parser.add_argument( | ||
'--output_size', nargs='+', help='Output image size, must be a multiple of 8') | ||
parser.add_argument( | ||
'--num_inference_steps', type=int, default=50, help='Number of inference steps.') | ||
parser.add_argument( | ||
'--guidance_scale', type=float, default=7.5, help='guidance scale.') | ||
parser.add_argument( | ||
'--controlnet_conditioning_scale', type=float, default=0.6, help='Controlnet conditioning scale.') | ||
parser.add_argument( | ||
'--num_generated_img', type=int, default=5, help='Number of generated images.') | ||
parser.add_argument( | ||
'--save_path', type=str, default=None, help='Generated image save path.') | ||
|
||
# models | ||
parser.add_argument( | ||
'--unet_model', type=str, default=None, help='Change unet mdoel.') | ||
parser.add_argument( | ||
'--vae_model', type=str, default=None, help='Change vae mdoel.') | ||
parser.add_argument( | ||
'--controlnet_model', type=str, default=None, help='Change controlnet mdoel.') | ||
|
||
args = parser.parse_args() | ||
|
||
return args | ||
|
||
def main(): | ||
args = parse_args() | ||
register_all_modules() | ||
|
||
cfg = Config.fromfile(args.config) | ||
cfg.model.unet.from_pretrained = args.unet_model | ||
cfg.model.vae.from_pretrained = args.vae_model | ||
cfg.model.controlnet.from_pretrained = args.controlnet_model | ||
|
||
|
||
cfg.model.init_cfg['type'] = 'convert_from_unet' | ||
controlnet = MODELS.build(cfg.model).cuda() | ||
|
||
# call init_weights manually to convert weight | ||
controlnet.init_weights() | ||
|
||
prompt = args.prompt | ||
negative_prompt = args.negative_prompt | ||
control_path = args.qrcode_img | ||
control_img = mmcv.imread(control_path) | ||
control_img = cv2.resize(control_img, (int(args.resize[0]),int(args.resize[1]))) | ||
control_img = control_img[:,:,0:1] | ||
control_img = np.concatenate([control_img]*3, axis=2) | ||
control = Image.fromarray(control_img) | ||
|
||
num_inference_steps = args.num_inference_steps | ||
guidance_scale = args.guidance_scale | ||
num_images_per_prompt = 1 | ||
controlnet_conditioning_scale = args.controlnet_conditioning_scale | ||
height=int(args.resize[1]) | ||
width=int(args.resize[0]) | ||
|
||
num = args.num_generated_img | ||
save_path = args.save_path | ||
|
||
for i in range(num): | ||
output_dict = controlnet.infer( | ||
prompt = prompt, | ||
control = control, | ||
height = height, | ||
width = width, | ||
controlnet_conditioning_scale=controlnet_conditioning_scale, | ||
num_inference_steps=num_inference_steps, | ||
guidance_scale=guidance_scale, | ||
num_images_per_prompt=num_images_per_prompt, | ||
negative_prompt=negative_prompt, | ||
) | ||
samples = output_dict['samples'] | ||
savepath = os.path.join(save_path, str(i)+'_sample.png') | ||
samples[0].save(savepath) | ||
|
||
if __name__ == '__main__': | ||
main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
cd mmagic_qrcode_generator