Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,11 +1,28 @@
_base_ = ['../../_base_/default_runtime.py']
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.config import read_base

with read_base():
from ..._base_.default_runtime import *

from mmengine.dataset import DefaultSampler
from mmengine.optim import CosineAnnealingLR, LinearLR
from mmengine.runner import EpochBasedTrainLoop, TestLoop, ValLoop
from torch.optim import AdamW

from mmaction.datasets import (CenterCrop, DecordDecode, DecordInit, Flip,
FormatShape, PackActionInputs,
PytorchVideoWrapper, RandomResizedCrop, Resize,
ThreeCrop, UniformSample, VideoDataset)
from mmaction.evaluation import AccMetric
from mmaction.models import (ActionDataPreprocessor, Recognizer3D,
TimeSformerHead, UniFormerHead, UniFormerV2)

# model settings
num_frames = 8
model = dict(
type='Recognizer3D',
type=Recognizer3D,
backbone=dict(
type='UniFormerV2',
type=UniFormerV2,
input_resolution=224,
patch_size=16,
width=768,
Expand All @@ -31,13 +48,13 @@
'https://download.openmmlab.com/mmaction/v1.0/recognition/uniformerv2/kinetics400/uniformerv2-base-p16-res224_clip-kinetics710-pre_u8_kinetics400-rgb_20221219-203d6aac.pth', # noqa: E501
prefix='backbone.')),
cls_head=dict(
type='TimeSformerHead',
type=TimeSformerHead,
dropout_ratio=0.5,
num_classes=339,
in_channels=768,
average_clips='prob'),
data_preprocessor=dict(
type='ActionDataPreprocessor',
type=ActionDataPreprocessor,
mean=[114.75, 114.75, 114.75],
std=[57.375, 57.375, 57.375],
format_shape='NCTHW'))
Expand All @@ -52,63 +69,56 @@

file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='UniformSample', clip_len=num_frames, num_clips=1),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type=DecordInit, **file_client_args),
dict(type=UniformSample, clip_len=num_frames, num_clips=1),
dict(type=DecordDecode),
dict(type=Resize, scale=(-1, 256)),
dict(
type='PytorchVideoWrapper',
op='RandAugment',
magnitude=7,
num_layers=4),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='PackActionInputs')
type=PytorchVideoWrapper, op='RandAugment', magnitude=7, num_layers=4),
dict(type=RandomResizedCrop),
dict(type=Resize, scale=(224, 224), keep_ratio=False),
dict(type=Flip, flip_ratio=0.5),
dict(type=FormatShape, input_format='NCTHW'),
dict(type=PackActionInputs)
]

val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='UniformSample', clip_len=num_frames, num_clips=1,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 224)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='PackActionInputs')
dict(type=DecordInit, **file_client_args),
dict(type=UniformSample, clip_len=num_frames, num_clips=1, test_mode=True),
dict(type=DecordDecode),
dict(type=Resize, scale=(-1, 224)),
dict(type=CenterCrop, crop_size=224),
dict(type=FormatShape, input_format='NCTHW'),
dict(type=PackActionInputs)
]

test_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='UniformSample', clip_len=num_frames, num_clips=4,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 224)),
dict(type='ThreeCrop', crop_size=224),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='PackActionInputs')
dict(type=DecordInit, **file_client_args),
dict(type=UniformSample, clip_len=num_frames, num_clips=4, test_mode=True),
dict(type=DecordDecode),
dict(type=Resize, scale=(-1, 224)),
dict(type=ThreeCrop, crop_size=224),
dict(type=FormatShape, input_format='NCTHW'),
dict(type=PackActionInputs)
]

train_dataloader = dict(
batch_size=8,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
sampler=dict(type=DefaultSampler, shuffle=True),
dataset=dict(
type=dataset_type,
type=VideoDataset,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=8,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=dataset_type,
type=VideoDataset,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
Expand All @@ -117,47 +127,49 @@
batch_size=8,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=dataset_type,
type=VideoDataset,
ann_file=ann_file_test,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))

val_evaluator = dict(type='AccMetric')
test_evaluator = dict(type='AccMetric')
val_evaluator = dict(type=AccMetric)
test_evaluator = dict(type=AccMetric)
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=24, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
type=EpochBasedTrainLoop, max_epochs=24, val_begin=1, val_interval=1)
val_cfg = dict(type=ValLoop)
test_cfg = dict(type=TestLoop)

base_lr = 2e-5
optim_wrapper = dict(
optimizer=dict(
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05),
type=AdamW, lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05),
paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0),
clip_grad=dict(max_norm=20, norm_type=2))

param_scheduler = [
dict(
type='LinearLR',
type=LinearLR,
start_factor=1 / 20,
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
type=CosineAnnealingLR,
eta_min_ratio=1 / 20,
by_epoch=True,
begin=5,
end=24,
convert_to_iter_based=True)
]

default_hooks = dict(
checkpoint=dict(interval=3, max_keep_ckpts=5), logger=dict(interval=100))
default_hooks.update(
dict(
checkpoint=dict(interval=3, max_keep_ckpts=5),
logger=dict(interval=100)))

# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
Expand Down
Loading