This is the source code of our paper:
Ryo Ueda, Hiromi Narimatsu, Yusuke Miyao, & Shiro Kumano.
VAD Emotion Control in Visual Art Captioning via Disentangled Multimodal Representation.
ACII2024.
- Install
rye
to install and manage Python packages from https://github.com/astral-sh/rye and runrye sync
to install all necessary packages - Download
ArtEmis
dataset from https://www.artemisdataset.org/ - Download
Wikiart
dataset from, e.g., https://github.com/cs-chan/ArtGAN - Download
NRC-VAD
dataset from https://saifmohammad.com/WebPages/nrc-vad.html or by git cloning https://github.com/SteveKGYang/VAD-VAE.git - Git clone
D-ViSA
dataset from https://github.com/dxlabskku/D-ViSA.git
Minial example command:
$ .venv/bin/python -m src.train.train \
--artemis_data_path ${Path to ArtEmis} \
--artemis_data_sep ${Appropriate Delimiter} \
--nrc_vad_lexicon_data_path ${Path to NRC-VAD} \
--dvisa_data_path ${Path to D-ViSA} \
--wikiart_dirpath ${Path to WikiArt}
For more options, try:
$ .venv/bin/python -m src.train.train --help
or directly check out ./src/train/train.py
.
@inproceedings{UedaNMK2024,
author={Ueda, Ryo and Narimatsu, Hiromi and Miyao, Yusuke and Kumano, Shiro},
booktitle={2024 12th International Conference on Affective Computing and Intelligent Interaction (ACII)},
title={VAD Emotion Control in Visual Art Captioning via Disentangled Multimodal Representation},
year={2024}
}