This repository forked from https://github.com/ultralytics/yolov3 (powerful implementation of yolo (Yoo Only Look Once) algorithm for object detection using tensorflow, keras and torch) for lip detection and it's state. four lip state will detect include laugh, open, close and pucker. the pretrained weights saved in:
models/mine/best.pt
instruction of using pre-trained weights introduced in Tutorial.
Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.6
. To install run:
$ pip install -r requirements.txt
you can check net using webcam by:
python detect.py --source 0 --weights models/mine/best.pt
and check for video by:
python detect.py --source path/to/your/video --weights models/mine/best.pt
some useful additional arguments are:
--output - path for saving your results(default inference/output/{name})
--img-size - size of processing images, lower size cause better speed and worse accuracy(default:640)
--conf-thres- object confidence threshold(default=0.25)
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
--weights models/mine/best.pt