forked from DefTruth/yolor
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2a7ceba
commit c58bad1
Showing
2 changed files
with
829 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import argparse | ||
|
||
import torch | ||
|
||
from utils.google_utils import attempt_download | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--weights', type=str, default='./yolov4.pt', help='weights path') | ||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') | ||
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | ||
opt = parser.parse_args() | ||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand | ||
print(opt) | ||
|
||
# Input | ||
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection | ||
|
||
# Load PyTorch model | ||
attempt_download(opt.weights) | ||
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() | ||
model.eval() | ||
model.model[-1].export = True # set Detect() layer export=True | ||
y = model(img) # dry run | ||
|
||
# TorchScript export | ||
try: | ||
print('\nStarting TorchScript export with torch %s...' % torch.__version__) | ||
f = opt.weights.replace('.pt', '.torchscript.pt') # filename | ||
ts = torch.jit.trace(model, img) | ||
ts.save(f) | ||
print('TorchScript export success, saved as %s' % f) | ||
except Exception as e: | ||
print('TorchScript export failure: %s' % e) | ||
|
||
# ONNX export | ||
try: | ||
import onnx | ||
|
||
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) | ||
f = opt.weights.replace('.pt', '.onnx') # filename | ||
model.fuse() # only for ONNX | ||
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], | ||
output_names=['classes', 'boxes'] if y is None else ['output']) | ||
|
||
# Checks | ||
onnx_model = onnx.load(f) # load onnx model | ||
onnx.checker.check_model(onnx_model) # check onnx model | ||
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model | ||
print('ONNX export success, saved as %s' % f) | ||
except Exception as e: | ||
print('ONNX export failure: %s' % e) | ||
|
||
# CoreML export | ||
try: | ||
import coremltools as ct | ||
|
||
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) | ||
# convert model from torchscript and apply pixel scaling as per detect.py | ||
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) | ||
f = opt.weights.replace('.pt', '.mlmodel') # filename | ||
model.save(f) | ||
print('CoreML export success, saved as %s' % f) | ||
except Exception as e: | ||
print('CoreML export failure: %s' % e) | ||
|
||
# Finish | ||
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.') |
Oops, something went wrong.