Skip to content

Commit

Permalink
Add nninfwlpor to iset.mm (#4473)
Browse files Browse the repository at this point in the history
* Move 2ssom from mathbox to main in iset.mm

* Add nninfwlpor to iset.mm

This says that WLPO implies decidable equality for NN+oo .

Includes lemmas nninfwlporlemd and nninfwlporlem .
  • Loading branch information
jkingdon authored Dec 10, 2024
1 parent 59c5269 commit 6c20247
Showing 1 changed file with 66 additions and 5 deletions.
71 changes: 66 additions & 5 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -62063,6 +62063,11 @@ ordinals implies excluded middle ( ~ ordsucunielexmid ). (Contributed
( c4o c3o csuc com df-4o wcel 3onn peano2 ax-mp eqeltri ) ABCZDEBDFKDFGBHIJ
$.

$( The ordinal 2 is included in the set of natural number ordinals.
(Contributed by BJ, 5-Aug-2024.) $)
2ssom $p |- 2o C_ _om $=
( c2o com wcel wss 2onn elomssom ax-mp ) ABCABDEAFG $.

$( Multiply an element of ` _om ` by ` 1o ` . (Contributed by Mario
Carneiro, 17-Nov-2014.) $)
nnm1 $p |- ( A e. _om -> ( A .o 1o ) = A ) $=
Expand Down Expand Up @@ -71050,6 +71055,67 @@ of Omniscience (WLPO).
HRVBVCVDVEPVF $.
$}

${
nninfwlporlem.x $e |- ( ph -> X : _om --> 2o ) $.
nninfwlporlem.y $e |- ( ph -> Y : _om --> 2o ) $.
nninfwlporlem.d $e |- D = ( i e. _om |->
if ( ( X ` i ) = ( Y ` i ) , 1o , (/) ) ) $.

${
$d D i j $. $d X i j $. $d Y i j $. $d i j ph $.
$( Given two countably infinite sequences of zeroes and ones, they are
equal if and only if a sequence formed by pointwise comparing them is
all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) $)
nninfwlporlemd $p |- ( ph -> ( X = Y <-> D = ( i e. _om |-> 1o ) ) ) $=
( vj cfv wceq com wral c1o wcel wa c0 c2o fveq2 a1i cv cmpt wn 1n0 neii
intnan biorfi eqid biantru orbi1i bitri eqcom cif eqeq12d ifbid cbvmptv
wo eqtri simpr 1lt2o 0lt2o wdc ffvelrnda sselid syl2anc ifcldcd fvmptd3
2ssom nndceq eqeq2d wb eqifdc syl bitrd bitr3id bitr4id fveqeq2 cbvralv
ralbidva bitrdi ffnd eqfnfv ralrimiva fnmpt eqidd 1onn fnmptfvd 3bitr4d
wfn ) ACUAZDJZWJEJZKZCLMZIUAZBJNKZILMZDEKZBCLNUBKAWNWJBJZNKZCLMWQAWMWTC
LAWJLOZPZWMWMNNKZPZWMUCZNQKZPZUQZWTWMWMXGUQXHXGWMXFXENQUDUEUFUGWMXDXGXC
WMNUHUIUJUKWTNWSKZXBXHNWSULXBXINWMNQUMZKZXHXBWSXJNXBIWJWODJZWOEJZKZNQUM
ZXJLBRBCLXJUBILXOUBHCILXJXOWJWOKZWMXNNQXPWKXLWLXMWJWODSWJWOESUNUOUPURWO
WJKZXNWMNQXQXLWKXMWLWOWJDSWOWJESUNUOAXAUSXBWMNQRNROXBUTTQROXBVATXBWKLOW
LLOWMVBZXBRLWKVHALRWJDFVCVDXBRLWLVHALRWJEGVCVDWKWLVIVEZVFZVGVJXBXRXKXHV
KXSWMNNQVLVMVNVOVPVSWTWPCILWJWONBVQVRVTADLWIELWIWRWNVKALRDFWAALREGWACLD
EWBVEALNNLIBLCAXJROZCLMBLWIAYACLXTWCCLXJBRHWDVMXQNWENLOZAWOLOPWFTYBXBWF
TWGWH $.
$}

${
$d D f x $. $d D i x $. $d i ph x $. $d X i $. $d Y i $.
nninfwlporlem.w $e |- ( ph -> _om e. WOmni ) $.
$( Lemma for ~ nninfwlpor . The result. (Contributed by Jim Kingdon,
7-Dec-2024.) $)
nninfwlporlem $p |- ( ph -> DECID X = Y ) $=
( vx vf wceq wdc com c1o cv cfv c2o wcel a1i cmpt wral co fveq1 ralbidv
cmap eqeq1d dcbid cwomni cvv wb omex iswomnimap ax-mp sylib wf c0 1lt2o
wa 0lt2o 2ssom ffvelrnda sselid nndceq syl2anc ifcldcd fmptd 2onn elexi
cif elmap sylibr rspcdva ffnd eqidd 1onn fnmptfvd mpbird nninfwlporlemd
) ADELZMBCNOUALZMZAWBJPZBQZOLZJNUBZMZAWCKPZQZOLZJNUBZMZWGKRNUFUCZBWHBLZ
WKWFWNWJWEJNWNWIWDOWCWHBUDUGUEUHANUISZWLKWMUBZINUJSWOWPUKULJNKUJUMUNUOA
NRBUPBWMSACNCPZDQZWQEQZLZOUQVJRBAWQNSUSZWTOUQRORSXAURTUQRSXAUTTXAWRNSWS
NSWTMXARNWRVAANRWQDFVBVCXARNWSVAANRWQEGVBVCWRWSVDVEVFHVGZRNBRNVHVIULVKV
LVMAWAWFANOONJBNCANRBXBVNWCWQLOVOONSZAWCNSUSVPTXCXAVPTVQUHVRAVTWAABCDEF
GHVSUHVR $.
$}
$}

${
$d i j x y $.
$( The Weak Limited Principle of Omniscience (WLPO) implies that equality
for ` NN+oo ` is decidable. (Contributed by Jim Kingdon,
7-Dec-2024.) $)
nninfwlpor $p |- ( _om e. WOmni
-> A. x e. NN+oo A. y e. NN+oo DECID x = y ) $=
( vj vi com cwomni wcel cv wceq wdc xnninf wa cfv c1o c0 cif c2o wf fveq2
nninff cmpt ad2antrl eqeq12d ifbid cbvmptv simpl nninfwlporlem ralrimivva
ad2antll ) EFGZAHZBHZIJABKKUJUKKGZULKGZLZLCECHZUKMZUPULMZIZNOPZUADUKULUME
QUKRUJUNUKTUBUNEQULRUJUMULTUICDEUTDHZUKMZVAULMZIZNOPUPVAIZUSVDNOVEUQVBURV
CUPVAUKSUPVAULSUCUDUEUJUOUFUGUH $.
$}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Expand Down Expand Up @@ -163349,11 +163415,6 @@ which membership in it is a bounded proposition ( ~ df-bdc ).
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

$( The ordinal 2 is included in the set of natural number ordinals.
(Contributed by BJ, 5-Aug-2024.) $)
2ssom $p |- 2o C_ _om $=
( c2o com wcel wss 2onn elomssom ax-mp ) ABCABDEAFG $.

${
funmptd.def $e |- ( ph -> F = ( x e. A |-> B ) ) $.
$( The maps-to notation defines a function (deduction form).
Expand Down

0 comments on commit 6c20247

Please sign in to comment.