Skip to content

Commit

Permalink
Adjust 2sq comments in iset.mm
Browse files Browse the repository at this point in the history
Add 2sqlem11 and 2sq to mmil.html

Don't refer to 2sq in comments because we haven't proved it yet.
  • Loading branch information
jkingdon committed Nov 12, 2024
1 parent ad278a8 commit 537809d
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 14 deletions.
27 changes: 13 additions & 14 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -156691,14 +156691,14 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is
$d x D $. $d a p x y z E $. $d p q u v x y z N $. $d a b m n x y Y $.
$d a p x y z F $. $d n p q x y P $.
2sq.1 $e |- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) $.
$( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
$( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
2sqlem1 $p |- ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) $=
( wcel cgz cv cabs cfv c2 cexp co cmpt crn wceq wrex eleq2i cc wb cbvmptv
fveq2 oveq1d elrnmptg gzcn abscld recnd sqcld mprg bitri ) CDFCBGBHZIJZKL
MZNZOZFZCAHZIJZKLMZPAGQZDUOCERUSSFUPUTTAGAGUSCUNSBAGUMUSUKUQPULURKLUKUQIU
BUCUAUDUQGFZURVAURVAUQUQUEUFUGUHUIUJ $.

$( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
$( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
2sqlem2 $p |- ( A e. S <-> E. x e. ZZ E. y e. ZZ
A = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) $=
( vz wcel cv c2 cexp co caddc wceq cz wrex cfv cgz cc oveq1d cabs 2sqlem1
Expand Down Expand Up @@ -156816,10 +156816,9 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is

2sqlem5.3 $e |- ( ph -> ( N x. P ) e. S ) $.
2sqlem5.4 $e |- ( ph -> P e. S ) $.
$( Lemma for ~ 2sq . If a number that is a sum of two squares is
divisible by a prime that is a sum of two squares, then the quotient
is a sum of two squares. (Contributed by Mario Carneiro,
20-Jun-2015.) $)
$( Lemma for 2sq . If a number that is a sum of two squares is divisible
by a prime that is a sum of two squares, then the quotient is a sum of
two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) $)
2sqlem5 $p |- ( ph -> N e. S ) $=
( vp vq vx vy cv co cz wrex wcel wa cexp caddc wceq cmul 2sqlem2 reeanv
c2 sylib cprime simplrr simprlr simplrl simprll simprrr simprrl 2sqlem4
Expand All @@ -156836,10 +156835,10 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is
2sqlem6.2 $e |- ( ph -> B e. NN ) $.
2sqlem6.3 $e |- ( ph -> A. p e. Prime ( p || B -> p e. S ) ) $.
2sqlem6.4 $e |- ( ph -> ( A x. B ) e. S ) $.
$( Lemma for ~ 2sq . If a number that is a sum of two squares is
divisible by a number whose prime divisors are all sums of two
squares, then the quotient is a sum of two squares. (Contributed by
Mario Carneiro, 20-Jun-2015.) $)
$( Lemma for 2sq . If a number that is a sum of two squares is divisible
by a number whose prime divisors are all sums of two squares, then the
quotient is a sum of two squares. (Contributed by Mario Carneiro,
20-Jun-2015.) $)
2sqlem6 $p |- ( ph -> A e. S ) $=
( vm cn wcel cmul wi wral cdvds cprime wa vx vy vz vn cv co wbr c1 wceq
breq2 imbi1d ralbidv oveq2 eleq1d imbi12d nncn mulid1d biimpd a1i breq1
Expand Down Expand Up @@ -156880,7 +156879,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is

2sqlem7.2 $e |- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\
z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } $.
$( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
$( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
2sqlem7 $p |- Y C_ ( S i^i NN ) $=
( cv co c1 wceq wa cz wrex cn wcel cc0 wb cn0 cgcd c2 caddc cab cin simpr
cexp reximi 2sqlem2 sylibr wn 1ne0 gcdeq0 adantr eqeq1d bitr3d necon3bbid
Expand Down Expand Up @@ -156929,7 +156928,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is

2sqlem8.e $e |- E = ( C / ( C gcd D ) ) $.
2sqlem8.f $e |- F = ( D / ( C gcd D ) ) $.
$( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) $)
$( Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) $)
2sqlem8 $p |- ( ph -> M e. S ) $=
( vp c2 cexp co caddc cdiv cn c1 wne cuz cfv wa eluz2b3 simpld cz cc0
wcel clt wbr cdvds cgcd cmul wceq cmin syl nnzd 4sqlem5 zsqcl zsubcld
Expand Down Expand Up @@ -157013,7 +157012,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is

2sqlem9.6 $e |- ( ph -> M e. NN ) $.
2sqlem9.4 $e |- ( ph -> N e. Y ) $.
$( Lemma for ~ 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
$( Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) $)
2sqlem9 $p |- ( ph -> M e. S ) $=
( co c1 cz vu vv cv cgcd wceq c2 cexp caddc wa wrex wcel eqeq1 2rexbidv
anbi2d oveq1 eqeq1d oveq1d eqeq2d anbi12d oveq2 oveq2d cbvrex2vw bitrdi
Expand All @@ -157039,7 +157038,7 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is
RXSXTYA $.
$}

$( Lemma for ~ 2sq . Every factor of a "proper" sum of two squares (where
$( Lemma for 2sq . Every factor of a "proper" sum of two squares (where
the summands are coprime) is a sum of two squares. (Contributed by
Mario Carneiro, 19-Jun-2015.) $)
2sqlem10 $p |- ( ( A e. Y /\ B e. NN /\ B || A ) -> B e. S ) $=
Expand Down
12 changes: 12 additions & 0 deletions mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -12429,6 +12429,18 @@
<td>depends on quad2 and cubic</td>
</tr>

<tr>
<td>2sqlem11</td>
<td><i>none</i></td>
<td>the set.mm proof uses lgsqr and m1lgs</td>
</tr>

<tr>
<td>2sq</td>
<td><i>none</i></td>
<td>the set.mm proof uses 2sqlem11</td>
</tr>

<tr>
<td>irrdiff</td>
<td>~ apdiff</td>
Expand Down

0 comments on commit 537809d

Please sign in to comment.