Skip to content

meffmadd/intro-tc-vae

Repository files navigation

Intro-TC-VAE

An implementation of the Soft-Intro VAE with the beta-TC-VAE disentanglement term.

Files in this repository

File Description
main.py Entry point for training script, parses command line arguments
train.py Train loop with various parameters to change behaviour
models.py Implements autoencoder with encoder and decoder modules
dataset.py Implements the data loader with preprocessing and downsampling
utils.py Loss functions and miscellaneous helper functions
ModelVis.ipynb Visualizes the output of a specified model
tests Test cases, including a test run of the training loop
README.md This file

Running the training loop

python main.py --dataset ukiyo_e64 --device 0 --lr 2e-4 --num_epochs 250 --beta_kl 0.5 --beta_rec 0.75 --beta_neg 512 --z_dim 128 --batch_size 64 --amp --arch conv

Note that this requires a GPU to work. To train on the CPU use --device -1.

To run the tests use pytest:

pytest ./tests

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published