Skip to content

An intuitive library to extract features from time series

License

Notifications You must be signed in to change notification settings

mbarandas/tsfel

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

license py368 status Open In Colab

Time Series Feature Extraction Library

Intuitive time series feature extraction

This repository hosts the TSFEL - Time Series Feature Extraction Library python package. TSFEL assists researchers on exploratory feature extraction tasks on time series without requiring significant programming effort.

Users can interact with TSFEL using two methods:

Online

It does not requires installation as it relies on Google Colabs and a user interface provided by Google Sheets

Offline

Advanced users can take full potential of TSFEL by installing as a python package

pip install tsfel

Includes a comprehensive number of features

TSFEL is optimized for time series and automatically extracts over 50 different features on the statistical, temporal and spectral domains.

Functionalities

  • Intuitive, fast deployment and reproducible: interactive UI for feature selection and customization
  • Computational complexity evaluation: estimate the computational effort before extracting features
  • Comprehensive documentation: each feature extraction method has a detailed explanation
  • Unit tested: we provide unit tests for each feature
  • Easily extended: adding new features is easy and we encourage you to contribute with your custom features

Acknowledgements

We would like to acknowledge the financial support obtained from North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM), NORTE-01-0145-FEDER-000026.

About

An intuitive library to extract features from time series

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 68.4%
  • Python 31.6%