Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
hoheinzollern committed Aug 22, 2024
1 parent 3c1389e commit a654310
Showing 1 changed file with 73 additions and 1 deletion.
74 changes: 73 additions & 1 deletion theories/lspace.v
Original file line number Diff line number Diff line change
Expand Up @@ -155,15 +155,87 @@ Definition nm f := fine ('N[mu]_p%:E[f]).

Lemma ler_Lnorm_add (f g : ty) :
nm (f \+ g) <= nm f + nm g.
Proof.
rewrite /nm.
have : (-oo < 'N[mu]_p%:E[f])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
have : (-oo < 'N[mu]_p%:E[g])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
rewrite !ltNye_eq => /orP[f_fin /orP[g_fin|/eqP foo]|/eqP goo].
- rewrite -fineD ?fine_le//.
- admit.
- by rewrite fin_numD f_fin g_fin//.
rewrite minkowski//. admit. admit. admit.
- rewrite foo/= add0r.
have : ('N[mu]_p%:E[f] <= 'N[mu]_p%:E[(f \+ g)])%E.
rewrite unlock /Lnorm.
rewrite {1}(@ifF _ (p == 0)).
rewrite {1}(@ifF _ (p == 0)).
rewrite gt0_ler_poweR.
- by [].
- admit.
- admit.
- admit.
rewrite ge0_le_integral//.
- move => x _. rewrite lee_fin powR_ge0//.
- admit.
- move => x _. rewrite lee_fin powR_ge0//.
- admit.
- move => x _. rewrite lee_fin gt0_ler_powR//. admit. (* rewrite normr_le. *)

Admitted.

Lemma Lnorm_eq0 f : nm f = 0 -> f = 0.
Lemma natmulfctE (U : pointedType) (K : ringType) (f : U -> K) n :
f *+ n = (fun x => f x *+ n).
Proof. by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed.


Lemma Lnorm_eq0 f : nm f = 0 -> {ae mu, f =1 0}.
rewrite /nm => /eqP.
rewrite fine_eq0; last first. admit.
move/eqP/Lnorm_eq0_eq0.
(* ale: I don't think it holds almost everywhere equal does not mean equal *
rewrite unlock /Lnorm ifF.
rewrite poweR_eq0.
rewrite integral_abs_eq0. *)
Admitted.

Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k.
rewrite /nm unlock /Lnorm.
case: (ifP (p == 0)).
admit.

move => p0.
under eq_integral => x _.
rewrite -mulr_natr/=.
rewrite fctE (_ : k%:R _ = k%:R); last by rewrite natmulfctE.
rewrite normrM powRM//=.
rewrite mulrC EFinM.
over.
rewrite /=.
rewrite integralZl//; last first. admit.
rewrite poweRM; last 2 first.
- by rewrite lee_fin powR_ge0.
- by rewrite integral_ge0// => x _; rewrite lee_fin powR_ge0.

rewrite poweR_EFin -powRrM mulfV; last admit.
rewrite powRr1//.
rewrite fineM//; last admit.
rewrite mulrC.

Admitted.

Lemma LnormN f : nm (-f) = nm f.
rewrite /nm.
congr (fine _).
rewrite unlock /Lnorm.
case: ifP.
move=> p0.
admit.

move=> p0.
congr (_ `^ _)%E.
apply eq_integral => x _.
congr ((_ `^ _)%:E).
by rewrite normrN.
Admitted.

(*
Expand Down

0 comments on commit a654310

Please sign in to comment.