Skip to content

mahithabsl/Paperly-Research-Agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Paperly - AI Research Assistant

paperly-demo-video.mp4

This project consists of three main components:

  1. Chrome Browser Extension (UI)

  2. FastAPI Backend

  3. Streamlit Web Application

    image image image image

Project Structure

.
├── extension/          # Browser extension UI
├── extension_backend/  # FastAPI backend service
└── web_app/           # Streamlit web interface

Setup Instructions

Prerequisites

  • Python 3.8+
  • Pinecone account
  • Groq API key

Environment Variables

Create a .env file in the extension_backend directory with the following variables:

PINECONE_API_KEY=your_pinecone_api_key
LANGSMITH_API_KEY=your_langsmith_api_key
LANGSMITH_PROJECT=your_project_name
LANGSMITH_ENDPOINT=your_langsmith_endpoint

Backend Setup (extension_backend)

  1. Navigate to the backend directory:
cd extension_backend
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the FastAPI server:
python main.py

The server will start on http://localhost:8000

Browser Extension Setup (extension)

Load the extension in your browser:

  • Open Chrome/Edge
  • Go to Extensions (chrome://extensions/)
  • Enable Developer Mode
  • Click "Load unpacked"

Web Application Setup (web_app)

  1. Navigate to the web app directory:
cd web_app
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the Streamlit app:
streamlit run app.py

The web interface will be available at http://localhost:8501

Features

  • Browser Extension:

    • Direct integration with research paper websites
    • Quick access to AI-powered paper analysis
    • Context-aware querying
  • FastAPI Backend:

    • Handles document processing and indexing
    • Integrates with Pinecone for vector storage
    • Provides RESTful API endpoints for queries and explanations
  • Streamlit Web Interface:

    • User-friendly interface for paper analysis
    • Comprehensive research paper exploration
    • Detailed explanations and summaries

API Endpoints

POST /query

Process a research paper query with AI assistance.

POST /explain

Get detailed explanations for specific parts of a research paper.

Security Notes

  • API keys should be kept secure and never committed to version control
  • Use environment variables for sensitive information
  • Implement proper authentication in production

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

About

Paperly – AI Powered Research Paper Assistant

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •