Skip to content

lynn-1998/DeepCellEss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepCellEss

An interpretable deep learning-based cell line-specific essential protein prediction model.

The DeepCellEss web server for prediction and visualization available at http://bioinformatics.csu.edu.cn/DeepCellEss

Requirements

  • python=3.7.0
  • numpy=1.19.2
  • pandas=1.1.5
  • scikit-learn=0.24.2
  • scipy=1.7.1
  • pytorch=1.9.0
  • gensim=3.8.3

Usage

An demo to train DeepEssCell on the dataset of HCT-116 cell line using linux-64 platform.

1. Clone the repo

$ git clone https://github.com/lynn-1998/DeepCellEss.git
$ cd DeepCellEss

2. Create and activate the environment

$ cd DeepCellEss
$ conda create --name deepcelless --file requirments.txt
$ conda activate deepcelless

3. Train model

The trained models will be saved at file folder '../protein/saved_model/HCT-116/'.

$ cd code
$ python main.py protein --cell_line HCT-116 --gpu 0

4. Specify model hyperparameters

--batch_size is the size of each batch while training. --kernel_size is the kernel number of the CNN layer.
--head_num is the number of attention heads.
--hidden_dim is the dimention of the hidden state vector.
--layer_num is the number of lstm layers.
--gpu is the gpu number you used to build and train the model. The defalt value of 0 means "cuda:0". No gpu will default to cpu.

License

This project is licensed under the MIT License - see the LICENSE.txt file for details

Concat

Please feel free to contact us for any further questions.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages