An interpretable deep learning-based cell line-specific essential protein prediction model.
The DeepCellEss web server for prediction and visualization available at http://bioinformatics.csu.edu.cn/DeepCellEss
- python=3.7.0
- numpy=1.19.2
- pandas=1.1.5
- scikit-learn=0.24.2
- scipy=1.7.1
- pytorch=1.9.0
- gensim=3.8.3
An demo to train DeepEssCell on the dataset of HCT-116 cell line using linux-64 platform.
$ git clone https://github.com/lynn-1998/DeepCellEss.git
$ cd DeepCellEss
$ cd DeepCellEss
$ conda create --name deepcelless --file requirments.txt
$ conda activate deepcelless
The trained models will be saved at file folder '../protein/saved_model/HCT-116/'.
$ cd code
$ python main.py protein --cell_line HCT-116 --gpu 0
--batch_size is the size of each batch while training. --kernel_size is the kernel number of the CNN layer.
--head_num is the number of attention heads.
--hidden_dim is the dimention of the hidden state vector.
--layer_num is the number of lstm layers.
--gpu is the gpu number you used to build and train the model. The defalt value of 0 means "cuda:0". No gpu will default to cpu.
This project is licensed under the MIT License - see the LICENSE.txt file for details
Please feel free to contact us for any further questions.
- Yiming Li [email protected]
- Min Li [email protected]