Skip to content

llm-jp/modelwg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM-jp Model-WG working directory

https://github.com/llm-jp/modelwg

Direct commits to main branch are prohibited unless absolutely necessary.

Megatron to Hugging Face Llama2 Model Converter

We're using Megatron to Hugging Face Llama2 converter implemented by Fujii-san.
https://github.com/rioyokotalab/Megatron-Llama2

Install

$ ./install_Megatron_Llama2.sh

Conversion

  • Input Megatron-LM checkpoint path
    • /data/checkpoints_7b/model_name/
    • required files
      • iter_NNNNNNN/
      • latest_checkpointed_iteration.txt
  • Output Hugging Face model path
    • /model/7B_HF/llm-jp-7b-model-name/
  • Hugging Face tokenizer model path
    • /model/llm-jp-tokenizer/hf/ver2.2/tokenizer_model/

Example:

./convert_megatron_to_hf_llama.sh /data/checkpoints_7b/model_name/ /model/7B_HF/llm-jp-7b-model-name/ /model/llm-jp-tokenizer/hf/ver2.2/tokenizer_model/

Upload to HF

Before upload, you need to log in to Hugging Face via huggingface-cli login with an access token having write permission. You can create new access token here.

$ huggingface-cli login
Token: [Your Write Token Here]
Add token as git credential? (Y/n) Y
Token is valid (permission: write).
Your token has been saved in your configured git credential helpers (store).
Your token has been saved to /home/username/.cache/huggingface/token
Login successful

After logging in to Hugging Face, run script to upload models like below:

$ source Megatron-Llama2/venv/bin/activate
$ python upload_to_hf.py /model/7B_HF/llm-jp-7b-63500step.code10K_en20K_ja30K_ver2.2/ llm-jp/7b-v1.0.1-63500step.code10K_en20K_ja30K_ver2.2 main

If the base_model in the model card within the README.md of the model points to a path of a model located locally, the base_model line will be removed from README.md and a TODO memo will be added to the top of the model page like below:

**TODO: Add base_model description to model card section in Hugging Face Hub**

In this case, you need to edit README.md at the published model page to add base_model line and remove TODO line.

Megatron-DeepSpeed to Hugging Face GPT2 converter

175B version

Install

$ ./install_convert2hf-175b.sh

Conversion

  • Input Megatron-LM checkpoint path
    • /model/175B/global_step21000/
  • Output Hugging Face model path
    • /model/175B_HF/llm-jp-175b-21k/
  • Hugging Face tokenizer model path
    • /model/llm-jp-tokenizer/hf/ver2.2/code20K_en40K_ja60K.ver2.2_hf_fast.b4/

Example:

$ ./convert_mds-13b_to_hf_gpt2.sh /model/175B/global_step21000/ /model/175B_HF/llm-jp-175b-21k/ /model/llm-jp-tokenizer/hf/ver2.2/code20K_en40K_ja60K.ver2.2_hf_fast.b4/

13B version

Install

$ ./install_convert2hf-13b.sh

Conversion

  • Input Megatron-LM checkpoint path
    • /model/13B/ds_gpt_v101_fattn_nfs_0825-gpt_1.3B_fold00_gpu96_node12_lr2.0e-4_gbs1536_mbs4_nwk8_zero1_pp1/global_step8654/
  • Output Hugging Face model path
    • /model/13B_HF/llm-jp-13b-v1.0/
  • Hugging Face tokenizer model path
    • /model/llm-jp-tokenizer/hf/ver2.1/code10k_en20k_ja30k.ver2.1_hf_fast/

Example:

$ ./convert_mds-13b_to_hf_gpt2.sh /model/13B/ds_gpt_v101_fattn_nfs_0825-gpt_1.3B_fold00_gpu96_node12_lr2.0e-4_gbs1536_mbs4_nwk8_zero1_pp1/global_step8654/ /model/13B_HF/llm-jp-13b-v1.0/ /model/llm-jp-tokenizer/hf/ver2.1/code10k_en20k_ja30k.ver2.1_hf_fast/

Supervised Fine-tuning with llm-jp-sft

https://github.com/llm-jp/llm-jp-sft/

Usage in MDX environment:
https://github.com/llm-jp/llm-jp-sft/blob/main/mdx/README.md

Install

$ ./install_llm-jp-sft.sh

Enabling venv

$ cd llm-jp-sft/
$ source venv/bin/activate

Single-GPU LoRA SFT

Note

Due to the design of the SFTTrainer class used in the SFT script, the information from the run will be stored in a project titled "huggingface" within the wandb account of the user who executed it.

To modify the target project for storing this information, you have the option to use the wandb init command to configure the project settings, or alternatively, you can set the environment variables as shown below:

export WANDB_ENTITY=llm-jp
export WANDB_PROJECT=project_name

For Llama models:

$ CUDA_VISIBLE_DEVICES=0 mdx/train_peft_single_gpu.sh /model/7B_HF/model_name/ /model/7B_HF/model_name/ dataset/ mdx/dataset_jaster.sh 5 /model/7B_HF/model_name-jaster-lora-all 2 32 --peft_target_model llama-all
$ CUDA_VISIBLE_DEVICES=0 mdx/train_peft_single_gpu.sh /model/7B_HF/model_name/ /model/7B_HF/model_name/ dataset/ mdx/dataset_gpt4_self_inst_ja.sh 5 /model/7B_HF/model_name-self-inst-lora-all 2 32 --peft_target_model llama-all

For GPT-2 models:

$ CUDA_VISIBLE_DEVICES=0 mdx/train_peft_single_gpu.sh llm-jp/llm-jp-13b-v1.0 llm-jp/llm-jp-13b-v1.0 dataset/ mdx/dataset_jaster.sh 5 results/llm-jp/llm-jp-13b-v1.0-jaster-lora 1 64
$ CUDA_VISIBLE_DEVICES=0 mdx/train_peft_single_gpu.sh llm-jp/llm-jp-13b-v1.0 llm-jp/llm-jp-13b-v1.0 dataset/ mdx/dataset_gpt4_self_inst_ja.sh 5 results/llm-jp/llm-jp-13b-v1.0-self-inst-lora 1 64

Multi-GPU Full-parameter SFT

$ mdx/train_full_single_node.sh configs/accelerate_config_zero3.yaml /model/7B_HF/model_name/ /model/7B_HF/model_name/ dataset/ mdx/dataset_jaster_ja.sh 3 /model/7B_HF/smodel_name-jaster-full 2 16
$ mdx/train_full_single_node.sh configs/accelerate_config_zero3.yaml /model/7B_HF/model_name/ /model/7B_HF/model_name/ dataset/ mdx/dataset_gpt4_self_inst_ja.sh 3 /model/7B_HF/model_name-self-inst-full 2 16

llm-jp-eval

https://github.com/llm-jp/llm-jp-eval

Install

$ ./install_llm-jp-eval.sh

Enabling venv

$ cd llm-jp-eval/
$ source venv/bin/activate

Single-GPU Evaluation

$ CUDA_VISIBLE_DEVICES=0 python scripts/evaluate_llm.py model.pretrained_model_name_or_path=/model/7B_HF/model_name/ tokenizer.pretrained_model_name_or_path=/model/7B_HF/model_name/ target_dataset=all wandb.run_name=model_name
$ CUDA_VISIBLE_DEVICES=0 python scripts/evaluate_llm.py model.pretrained_model_name_or_path=/model/7B_HF/model_name/ tokenizer.pretrained_model_name_or_path=/model/7B_HF/model_name/ dataset_dir=dataset/tuning/dev target_dataset=gpt4_self_inst_ja wandb.run_name=model_name

Pre-training Settings

Run Monitoring

Set up

Install
$ ./install_run_sitter.sh
Initialize

Set SLACK_WEBHOOK_URL to ./run_sitter_url.txt. The format of SLACK_WEBHOOK_URL is like https://hooks.slack.com/services/foo/bar.

$ sudo su llmjp0
$ nano run_sitter_url.txt
> [save SLACK_WEBHOOK_URL]
$ cd run_sitter/
$ source venv/bin/activate
$ wandb init
Which team should we use?
(2) llm-jp
Which project should we use?
[select any project]
$ cd ..
$ exit

Launch Monitoring Process

Before launching ./run_sitter.sh, get the Run path value from wandb Run Overview page. The format of Run path is like llm-jp/megatron-lm-13B-2023-1225/o2uz07wk.

$ sudo su llmjp0
$ nohup ./run_sitter.sh RUN_PATH &

llm-jp-llama-2

13b-llm-jp-v2_CC_50k

$ sudo su llmjp0
$ tmux ls
$ tmux a -t SESSION_NAME
$ cd /model/llmjp0/Megatron-LM
$ bash scripts/mdx/llm-jp-llama-2-13b/13b-llm-jp-v2_CC_50k.sh >> 13b-llm-jp-v2_CC_50k_log 2>&1 &
$ tail -f 13b-llm-jp-v2_CC_50k_log

About

LLM-jp Model-WG Working Directory

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published