Skip to content

🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.

Notifications You must be signed in to change notification settings

lijingle-coder/TensorRT-Alpha

 
 

Repository files navigation

TensorRT-Alpha

Cuda

English | 简体中文


Visualization



Introduce

This repository provides accelerated deployment cases of deep learning CV popular models, and cuda c supports dynamic-batch image process, infer, decode, NMS.
There are two ways to compile model(pth or onnx):

pth -> trt coming soon.
pth -> onnx -> trt:
  • [i]. According to the network disk provided by TensorRT-Alpha, download ONNX directly. weiyun or google driver
  • [ii]]. Follow the instructions provided by TensorRT-Alpha to manually export ONNX from the relevant python source code framework.

Update

  • 2023.01.01 🔥 update yolov3, yolov4, yolov5, yolov6
  • 2023.01.04 🍅 update yolov7, yolox, yolor
  • 2023.01.05 🎉 update u2net, libfacedetection
  • 2023.01.08 🚀 The whole network is the first to support yolov8
  • 2023.01.20 update efficientdet, pphunmanseg

Installation

The following environments have been tested:

Ubuntu18.04
  • cuda11.3
  • cudnn8.2.0
  • gcc7.5.0
  • tensorrt8.4.2.4
  • opencv3.x or 4.x
  • cmake3.10.2
Windows10
  • cuda11.3
  • cudnn8.2.0
  • visual studio 2017 or 2019 or 2022
  • tensorrt8.4.2.4
  • opencv3.x or 4.x
Python environment(Optional)
# install miniconda first
conda create -n tensorrt-alpha python==3.8 -y
conda activate tensorrt-alpha
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha
pip install -r requirements.txt  

Installation Tutorial:

Quick Start

Ubuntu18.04

set your TensorRT_ROOT path:

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# set var TensorRT_ROOT to your path in line 20, eg:
# set(TensorRT_ROOT /root/TensorRT-8.4.2.4)

start to build project: For example:yolov8

Windows10

图文详细版:Windows10环境配置

Onnx

At present, more than 30 models have been implemented, and some onnx files of them are organized as follows:

🍉We will test the time of all models on tesla v100 and A100! Now let's preview the performance of yolov8n on RTX2070m(8G):

model video resolution model input size GPU Memory-Usage GPU-Util
yolov8n 1920x1080 8x3x640x640 1093MiB/7982MiB 14%
无法显示图片时显示的文字
cost time per frame

Some Precision Alignment Renderings Comparison


无法显示图片时显示的文字
yolov8n : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov7-tiny : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov6s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
libfacedetection : Offical( left ) vs Ours( right topK:2000)

Reference

[0].https://github.com/NVIDIA/TensorRT
[1].https://github.com/onnx/onnx-tensorrt
[2].https://github.com/NVIDIA-AI-IOT/torch2trt
[3].https://github.com/shouxieai/tensorRT_Pro
[4].https://github.com/opencv/opencv_zoo

About

🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 56.3%
  • Cuda 25.0%
  • Python 9.7%
  • CMake 8.8%
  • C 0.2%