Skip to content

legion-platform/dill

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dill

serialize all of python

About Dill

dill extends python's pickle module for serializing and de-serializing python objects to the majority of the built-in python types. Serialization is the process of converting an object to a byte stream, and the inverse of which is converting a byte stream back to on python object hierarchy.

dill provides the user the same interface as the pickle module, and also includes some additional features. In addition to pickling python objects, dill provides the ability to save the state of an interpreter session in a single command. Hence, it would be feasable to save a interpreter session, close the interpreter, ship the pickled file to another computer, open a new interpreter, unpickle the session and thus continue from the 'saved' state of the original interpreter session.

dill can be used to store python objects to a file, but the primary usage is to send python objects across the network as a byte stream. dill is quite flexible, and allows arbitrary user defined classes and functions to be serialized. Thus dill is not intended to be secure against erroneously or maliciously constructed data. It is left to the user to decide whether the data they unpickle is from a trustworthy source.

dill is part of pathos, a python framework for heterogeneous computing. dill is in active development, so any user feedback, bug reports, comments, or suggestions are highly appreciated. A list of known issues is maintained at http://trac.mystic.cacr.caltech.edu/project/pathos/query.html, with a public ticket list at https://github.com/uqfoundation/dill/issues.

Major Features

dill can pickle the following standard types:

  • none, type, bool, int, long, float, complex, str, unicode,
  • tuple, list, dict, file, buffer, builtin,
  • both old and new style classes,
  • instances of old and new style classes,
  • set, frozenset, array, functions, exceptions

dill can also pickle more 'exotic' standard types:

  • functions with yields, nested functions, lambdas
  • cell, method, unboundmethod, module, code, methodwrapper,
  • dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor,
  • wrapperdescriptor, xrange, slice,
  • notimplemented, ellipsis, quit

dill cannot yet pickle these standard types:

  • frame, generator, traceback

dill also provides the capability to:

  • save and load python interpreter sessions
  • save and extract the source code from functions and classes
  • interactively diagnose pickling errors

Current Release

The latest released version of dill is available from: https://pypi.org/project/dill

dill is distributed under a 3-clause BSD license.

Development Version

You can get the latest development version with all the shiny new features at: https://github.com/uqfoundation

If you have a new contribution, please submit a pull request.

More Information

Probably the best way to get started is to look at the documentation at http://dill.rtfd.io. Also see dill.tests for a set of scripts that demonstrate how dill can serialize different python objects. You can run the test suite with python -m dill.tests. The contents of any pickle file can be examined with undill. As dill conforms to the pickle interface, the examples and documentation found at http://docs.python.org/library/pickle.html also apply to dill if one will import dill as pickle. The source code is also generally well documented, so further questions may be resolved by inspecting the code itself. Please feel free to submit a ticket on github, or ask a question on stackoverflow (@Mike McKerns). If you would like to share how you use dill in your work, please send an email (to mmckerns at uqfoundation dot org).

Citation

If you use dill to do research that leads to publication, we ask that you acknowledge use of dill by citing the following in your publication::

M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis,
"Building a framework for predictive science", Proceedings of
the 10th Python in Science Conference, 2011;
http://arxiv.org/pdf/1202.1056

Michael McKerns and Michael Aivazis,
"pathos: a framework for heterogeneous computing", 2010- ;
http://trac.mystic.cacr.caltech.edu/project/pathos

Please see http://trac.mystic.cacr.caltech.edu/project/pathos or http://arxiv.org/pdf/1202.1056 for further information.

About

serialize all of python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%