Skip to content

learnables/torchml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

77682bd · May 30, 2023

History

63 Commits
May 30, 2023
May 27, 2023
Apr 16, 2022
May 27, 2023
May 30, 2023
Dec 4, 2022
May 27, 2023
Apr 16, 2022
Apr 16, 2022
Oct 10, 2022
May 27, 2023
May 27, 2023
May 27, 2023
Sep 9, 2022
Apr 16, 2022
Oct 8, 2022

Repository files navigation


Test Status

torchml implements the scikit-learn API on top of PyTorch. This means we automatically get GPU support for scikit-learn and, when possible, differentiability.

Resources

Getting Started

pip install torchml

Minimal Linear Regression Example

import torchml as ml

(X_train, y_train), (X_test, y_test) = generate_data()

# API closely follows scikit-learn
linreg = ml.linear_model.LinearRegression()
linreg.fit(X_train, y_train)
linreg.predict(X_test)

Changelog

A human-readable changelog is available in the CHANGELOG.md file.

Citing

To cite torchml repository in your academic publications, please use the following reference.

Sébastien M. R. Arnold, Lucy Xiaoyang Shi, Xinran Gao, Zhiheng Zhang, and Bairen Chen. 2023. "torchml: a scikit-learn implementation on top of PyTorch".

You can also use the following Bibtex entry:

@misc{torchml,
  author={Arnold, S{\'e}bastien M R and Shi, Lucy Xiaoyang and Gao, Xinran and Zhang, Zhiheng and Chen, Bairen},
  title={torchml: A scikit-learn implementation on top of PyTorch},
  year={2023},
  url={https://github.com/learnables/torchml},
}