Skip to content

Commit

Permalink
still working
Browse files Browse the repository at this point in the history
  • Loading branch information
brryan committed Jan 8, 2025
1 parent 573a4bf commit 03cd1e8
Showing 1 changed file with 11 additions and 10 deletions.
21 changes: 11 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,20 +7,21 @@ Performance Portable Opacity and Emissivity library for simulation codes

## API

singularity-opac provides a uniform API for all opacity models. The following functions are provided
singularity-opac provides a uniform API for all opacity models, in two forms: frequency-averaged
(Plank or Rosseland means) and frewquency-dependent. The following functions are provided
(here, $\sigma$ is the frequency- and angle-dependent cross section in units of ${\rm cm}^2$):
| Function | Expression | Description | Units |
| --------------------- | ---------- | --------------------- | ------- |
| AbsorptionCoefficient | $n \sigma$ | Absorption coefficient | $cm^{-1}$ |
| AbsorptionCoefficient | $n \sigma$ | Absorption coefficient | ${\rm cm}^{-1}$ |
| AngleAveragedAbsorptionCoefficient | $\frac{1}{4 \pi}\int n \sigma d\Omega$ | Absorption coefficient averaged over solid angle | ${\rm cm}^{-1}$ |
| EmissivityPerNuOmega | $j_{\nu} = \frac{dE}{d^3x dt d\Omega d\nu}$ | Frequency- and angle-dependent emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1}$ |
| EmissivityPerNu | $\int j_{\nu} d\Omega$ | Frequency-dependent emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1} {\rm Hz}^{-1}$ |
| Emissivity | $\int j_{\nu} d\nu d\Omega$ | Total emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1}$ |
| NumberEmissivity | $\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu$ | Total number emissivity | ${\rm cm}^{-3} {\rm s}^{-1}$ |
| ThermalDistributionOfTNu | $B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}$ | Specific intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1}$ |
| DThermalDistributionOfTNuDT | $dB_{\nu}/dT$ | Temperature derivative of specific intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1} {\rm K}^{-1}$ |
| ThermalDistributionOfT | $B = \int B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1}$ |
| ThermalNumberDistributionOfT | $B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1}$ |
| EmissivityPerNuOmega | $j_{\nu} = \frac{dE}{d^3x dt d\Omega d\nu}$ | Frequency- and angle-dependent emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}$ |
| EmissivityPerNu | $\int j_{\nu} d\Omega$ | Frequency-dependent emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}~{\rm Hz}^{-1}$ |
| Emissivity | $\int j_{\nu} d\nu d\Omega$ | Total emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}$ |
| NumberEmissivity | $\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu$ | Total number emissivity | ${\rm cm}^{-3}~{\rm s}^{-1}$ |
| ThermalDistributionOfTNu | $B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}$ | Specific intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}$ |
| DThermalDistributionOfTNuDT | $dB_{\nu}/dT$ | Temperature derivative of specific intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}~{\rm K}^{-1}$ |
| ThermalDistributionOfT | $B = \int B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}$ |
| ThermalNumberDistributionOfT | $B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}$ |

Note that the thermal radiation energy density `u = 1/c ThermalDistributionOfT` and the thermal radiation number density `n = 1/c ThermalNumberDistributionOfT`.

Expand Down

0 comments on commit 03cd1e8

Please sign in to comment.