The guide for using MORPH as a standalone surrogate and a foundation model is available in ./docs.
To clone the repository, click on top-right 'code' and select 'clone with HTTPS' and copy the code path and paste in the terminal.
git clone https://github.com/lanl/MORPH.git
Go to the directory
cd MORPH
Check the directory structure
directory_structure.md
- Install dependencies via environment.yml
conda env create -f environment.yml
- Activate the environment
conda activate pytorch_py38_env
- Install pytorch
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
- Check pytorch installation
python -c "import torch; print('PyTorch version:', torch.__version__); print('CUDA available:', torch.cuda.is_available())"
Output: PyTorch version: 2.4.1+cu118 CUDA available: True
- Check arguments:
python scripts/pretrain_MORPH.py -h
- Check arguments:
python scripts/finetune_MORPH.py -h
- Check arguments:
python scripts/infer_MORPH.py -h
If you use MORPH in your research, please cite:
@article{rautela2025morph,
title={MORPH: PDE Foundation Models with Arbitrary Data Modality},
author={Rautela, Mahindra Singh and Most, Alexander and Mansingh, Siddharth and Love, Bradley C and Biswas, Ayan and Oyen, Diane and Lawrence, Earl},
journal={arXiv preprint arXiv:2509.21670},
year={2025}
}


