Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions dsu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
class DSU:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [0] * n

def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]

def union(self, x, y):
root_x, root_y = self.find(x), self.find(y)
if root_x == root_y:
return
if self.rank[root_x] > self.rank[root_y]:
self.parent[root_y] = root_x
elif self.rank[root_x] < self.rank[root_y]:
self.parent[root_x] = root_y
else:
self.parent[root_y] = root_x
self.rank[root_x] += 1

def kruskal_mst(graph):
edge_list = sorted((weight, u, v) for u, v, weight in graph.edges(data='weight'))
dsu = DSU(graph.number_of_nodes())
mst_weight = 0

for weight, u, v in edge_list:
if dsu.find(u) != dsu.find(v):
dsu.union(u, v)
mst_weight += weight

return mst_weight
60 changes: 60 additions & 0 deletions graph.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import heapq

class Graph:
def __init__(self, vertices):
self.V = vertices
self.graph = []

def add_edge(self, u, v, w):
self.graph.append([u, v, w])

# find set of an element i
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])

# union of two sets of x and y
def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)

# attach smaller rank tree under root of high rank tree
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
else:
parent[yroot] = xroot
rank[xroot] += 1

# main function to construct MST using Kruskal's algorithm
def kruskal_mst(self):
result = []
i, e = 0, 0

# sort all edges in non-decreasing order of their weight
self.graph = sorted(self.graph, key=lambda item: item[2])

parent = []
rank = []

# create V subsets with single elements
for node in range(self.V):
parent.append(node)
rank.append(0)

# number of edges to be taken is equal to V-1
while e < self.V - 1:
u, v, w = self.graph[i]
i = i + 1
x = self.find(parent, u)
y = self.find(parent, v)

# if including this edge does not cause cycle, include it in result
if x != y:
e = e + 1
result.append([u, v, w])
self.union(parent, rank, x, y)

return result, sum([e[2] for e in result])
8 changes: 8 additions & 0 deletions kruskal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
```python
import heapq

class Edge:
def __init__(self, u, v, w):
self.u = u
self.v = v
self.w = w