Skip to content

Commit

Permalink
Add yukicoder/2578.rs yukicoder/2586.rs
Browse files Browse the repository at this point in the history
  • Loading branch information
koba-e964 committed Dec 15, 2023
1 parent 60b0eb1 commit 917cec9
Show file tree
Hide file tree
Showing 2 changed files with 467 additions and 0 deletions.
322 changes: 322 additions & 0 deletions yukicoder/2578.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
use std::io::Read;

fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}

fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }

/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int

macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;

// https://judge.yosupo.jp/submission/5155
mod pollard_rho {
/// binary gcd
pub fn gcd(mut x: i64, mut y: i64) -> i64 {
if y == 0 { return x; }
if x == 0 { return y; }
let k = (x | y).trailing_zeros();
y >>= k;
x >>= x.trailing_zeros();
while y != 0 {
y >>= y.trailing_zeros();
if x > y { let t = x; x = y; y = t; }
y -= x;
}
x << k
}

fn add_mod(x: i64, y: i64, n: i64) -> i64 {
let z = x + y;
if z >= n { z - n } else { z }
}

fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
assert!(x >= 0);
assert!(x < n);
let mut sum = 0;
let mut cur = x;
while y > 0 {
if (y & 1) == 1 { sum = add_mod(sum, cur, n); }
cur = add_mod(cur, cur, n);
y >>= 1;
}
sum
}

fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
let mut prod = if n == 1 { 0 } else { 1 };
let mut cur = x % n;
while e > 0 {
if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }
e >>= 1;
if e > 0 { cur = mul_mod(cur, cur, n); }
}
prod
}

pub fn is_prime(n: i64) -> bool {
if n <= 1 { return false; }
let small = [2, 3, 5, 7, 11, 13];
if small.iter().any(|&u| u == n) { return true; }
if small.iter().any(|&u| n % u == 0) { return false; }
let mut d = n - 1;
let e = d.trailing_zeros();
d >>= e;
// https://miller-rabin.appspot.com/
let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
a.iter().all(|&a| {
if a % n == 0 { return true; }
let mut x = mod_pow(a, d, n);
if x == 1 { return true; }
for _ in 0..e {
if x == n - 1 {
return true;
}
x = mul_mod(x, x, n);
if x == 1 { return false; }
}
x == 1
})
}

fn pollard_rho(n: i64, c: &mut i64) -> i64 {
// An improvement with Brent's cycle detection algorithm is performed.
// https://maths-people.anu.edu.au/~brent/pub/pub051.html
if n % 2 == 0 { return 2; }
loop {
let mut x: i64; // tortoise
let mut y = 2; // hare
let mut d = 1;
let cc = *c;
let f = |i| add_mod(mul_mod(i, i, n), cc, n);
let mut r = 1;
// We don't perform the gcd-once-in-a-while optimization
// because the plain gcd-every-time algorithm appears to
// outperform, at least on judge.yosupo.jp :)
while d == 1 {
x = y;
for _ in 0..r {
y = f(y);
d = gcd((x - y).abs(), n);
if d != 1 { break; }
}
r *= 2;
}
if d == n {
*c += 1;
continue;
}
return d;
}
}

/// Outputs (p, e) in p's ascending order.
pub fn factorize(x: i64) -> Vec<(i64, usize)> {
if x <= 1 { return vec![]; }
let mut hm = std::collections::HashMap::new();
let mut pool = vec![x];
let mut c = 1;
while let Some(u) = pool.pop() {
if is_prime(u) {
*hm.entry(u).or_insert(0) += 1;
continue;
}
let p = pollard_rho(u, &mut c);
pool.push(p);
pool.push(u / p);
}
let mut v: Vec<_> = hm.into_iter().collect();
v.sort();
v
}
} // mod pollard_rho

// https://yukicoder.me/problems/no/2578 (4)
// Solved with hints
// m <= 10^18 なので m の約数は 10^5 個程度あるので、約数をキーに持つ単純な DP だとうまくいかない。
// g(t) := \sum{lcm | t} \prod W とすると、g(t) = \prod{a_i | t} (W_i + 1) である。(足すものが乗法的であるため分配法則が使える。)
// {m の約数} のように線型束の直積になっている束について、包除原理は (1 -1 0 0 ...) の直積である。
// つまり、 f(m) = \sum_{u|m, u is squarefree} (-1)^{#primes(u)} g(t/u) である。
// これによって、2^(m の素因数の個数) で手間を抑えられるので、高速に計算できる。
// https://gist.github.com/koba-e964/2de3a6480749241f424c4e110a440503 によれば m の素因数の個数は 15 個以下であるため、2^15 * n 程度の手間である。
// -> TLE。高速ゼータ変換を使って (m の素因数の個数)n にする必要があった。
// Tags: product-of-lattices, inclusion-exclusion-principle, zeta-transformation
fn main() {
let t: usize = get();
let m: i64 = get();
let pe = pollard_rho::factorize(m);
let l = pe.len();
for _ in 0..t {
let n: usize = get();
let b: i64 = get();
let c: i64 = get();
let d: i64 = get();
let a: Vec<i64> = (0..n).map(|_| get()).collect();
let mut w = vec![MInt::new(b); n];
for i in 1..n {
w[i] = w[i - 1] * c + d;
}
let mut dp = vec![MInt::new(1); 1 << l];
for i in 0..n {
if m % a[i] != 0 {
continue;
}
let rem = m / a[i];
let mut bits = 0;
for j in 0..l {
if rem % pe[j].0 == 0 {
bits |= 1 << j;
}
}
dp[bits] *= w[i] + 1;
}
for i in 0..l {
for bits in 0usize..1 << l {
if (bits & 1 << i) == 0 {
dp[bits] = dp[bits] * dp[bits ^ 1 << i];
}
}
}
let mut tot = MInt::new(0);
for bits in 0..1usize << l {
if bits.count_ones() % 2 == 0 {
tot += dp[bits];
} else {
tot -= dp[bits];
}
}
if m == 1 {
tot -= 1; // exclude the empty set
}
println!("{}", tot);
}
}
Loading

0 comments on commit 917cec9

Please sign in to comment.