-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add yukicoder/2578.rs yukicoder/2586.rs
- Loading branch information
Showing
2 changed files
with
467 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,322 @@ | ||
use std::io::Read; | ||
|
||
fn get_word() -> String { | ||
let stdin = std::io::stdin(); | ||
let mut stdin=stdin.lock(); | ||
let mut u8b: [u8; 1] = [0]; | ||
loop { | ||
let mut buf: Vec<u8> = Vec::with_capacity(16); | ||
loop { | ||
let res = stdin.read(&mut u8b); | ||
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { | ||
break; | ||
} else { | ||
buf.push(u8b[0]); | ||
} | ||
} | ||
if buf.len() >= 1 { | ||
let ret = String::from_utf8(buf).unwrap(); | ||
return ret; | ||
} | ||
} | ||
} | ||
|
||
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } | ||
|
||
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 | ||
mod mod_int { | ||
use std::ops::*; | ||
pub trait Mod: Copy { fn m() -> i64; } | ||
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] | ||
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } | ||
impl<M: Mod> ModInt<M> { | ||
// x >= 0 | ||
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } | ||
fn new_internal(x: i64) -> Self { | ||
ModInt { x: x, phantom: ::std::marker::PhantomData } | ||
} | ||
pub fn pow(self, mut e: i64) -> Self { | ||
debug_assert!(e >= 0); | ||
let mut sum = ModInt::new_internal(1); | ||
let mut cur = self; | ||
while e > 0 { | ||
if e % 2 != 0 { sum *= cur; } | ||
cur *= cur; | ||
e /= 2; | ||
} | ||
sum | ||
} | ||
#[allow(dead_code)] | ||
pub fn inv(self) -> Self { self.pow(M::m() - 2) } | ||
} | ||
impl<M: Mod> Default for ModInt<M> { | ||
fn default() -> Self { Self::new_internal(0) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { | ||
type Output = Self; | ||
fn add(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x + other.x; | ||
if sum >= M::m() { sum -= M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { | ||
type Output = Self; | ||
fn sub(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x - other.x; | ||
if sum < 0 { sum += M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { | ||
type Output = Self; | ||
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { | ||
fn add_assign(&mut self, other: T) { *self = *self + other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { | ||
fn sub_assign(&mut self, other: T) { *self = *self - other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { | ||
fn mul_assign(&mut self, other: T) { *self = *self * other; } | ||
} | ||
impl<M: Mod> Neg for ModInt<M> { | ||
type Output = Self; | ||
fn neg(self) -> Self { ModInt::new(0) - self } | ||
} | ||
impl<M> ::std::fmt::Display for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
self.x.fmt(f) | ||
} | ||
} | ||
impl<M: Mod> ::std::fmt::Debug for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
let (mut a, mut b, _) = red(self.x, M::m()); | ||
if b < 0 { | ||
a = -a; | ||
b = -b; | ||
} | ||
write!(f, "{}/{}", a, b) | ||
} | ||
} | ||
impl<M: Mod> From<i64> for ModInt<M> { | ||
fn from(x: i64) -> Self { Self::new(x) } | ||
} | ||
// Finds the simplest fraction x/y congruent to r mod p. | ||
// The return value (x, y, z) satisfies x = y * r + z * p. | ||
fn red(r: i64, p: i64) -> (i64, i64, i64) { | ||
if r.abs() <= 10000 { | ||
return (r, 1, 0); | ||
} | ||
let mut nxt_r = p % r; | ||
let mut q = p / r; | ||
if 2 * nxt_r >= r { | ||
nxt_r -= r; | ||
q += 1; | ||
} | ||
if 2 * nxt_r <= -r { | ||
nxt_r += r; | ||
q -= 1; | ||
} | ||
let (x, z, y) = red(nxt_r, r); | ||
(x, y - q * z, z) | ||
} | ||
} // mod mod_int | ||
|
||
macro_rules! define_mod { | ||
($struct_name: ident, $modulo: expr) => { | ||
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] | ||
pub struct $struct_name {} | ||
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } | ||
} | ||
} | ||
const MOD: i64 = 998_244_353; | ||
define_mod!(P, MOD); | ||
type MInt = mod_int::ModInt<P>; | ||
|
||
// https://judge.yosupo.jp/submission/5155 | ||
mod pollard_rho { | ||
/// binary gcd | ||
pub fn gcd(mut x: i64, mut y: i64) -> i64 { | ||
if y == 0 { return x; } | ||
if x == 0 { return y; } | ||
let k = (x | y).trailing_zeros(); | ||
y >>= k; | ||
x >>= x.trailing_zeros(); | ||
while y != 0 { | ||
y >>= y.trailing_zeros(); | ||
if x > y { let t = x; x = y; y = t; } | ||
y -= x; | ||
} | ||
x << k | ||
} | ||
|
||
fn add_mod(x: i64, y: i64, n: i64) -> i64 { | ||
let z = x + y; | ||
if z >= n { z - n } else { z } | ||
} | ||
|
||
fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 { | ||
assert!(x >= 0); | ||
assert!(x < n); | ||
let mut sum = 0; | ||
let mut cur = x; | ||
while y > 0 { | ||
if (y & 1) == 1 { sum = add_mod(sum, cur, n); } | ||
cur = add_mod(cur, cur, n); | ||
y >>= 1; | ||
} | ||
sum | ||
} | ||
|
||
fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 { | ||
let mut prod = if n == 1 { 0 } else { 1 }; | ||
let mut cur = x % n; | ||
while e > 0 { | ||
if (e & 1) == 1 { prod = mul_mod(prod, cur, n); } | ||
e >>= 1; | ||
if e > 0 { cur = mul_mod(cur, cur, n); } | ||
} | ||
prod | ||
} | ||
|
||
pub fn is_prime(n: i64) -> bool { | ||
if n <= 1 { return false; } | ||
let small = [2, 3, 5, 7, 11, 13]; | ||
if small.iter().any(|&u| u == n) { return true; } | ||
if small.iter().any(|&u| n % u == 0) { return false; } | ||
let mut d = n - 1; | ||
let e = d.trailing_zeros(); | ||
d >>= e; | ||
// https://miller-rabin.appspot.com/ | ||
let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]; | ||
a.iter().all(|&a| { | ||
if a % n == 0 { return true; } | ||
let mut x = mod_pow(a, d, n); | ||
if x == 1 { return true; } | ||
for _ in 0..e { | ||
if x == n - 1 { | ||
return true; | ||
} | ||
x = mul_mod(x, x, n); | ||
if x == 1 { return false; } | ||
} | ||
x == 1 | ||
}) | ||
} | ||
|
||
fn pollard_rho(n: i64, c: &mut i64) -> i64 { | ||
// An improvement with Brent's cycle detection algorithm is performed. | ||
// https://maths-people.anu.edu.au/~brent/pub/pub051.html | ||
if n % 2 == 0 { return 2; } | ||
loop { | ||
let mut x: i64; // tortoise | ||
let mut y = 2; // hare | ||
let mut d = 1; | ||
let cc = *c; | ||
let f = |i| add_mod(mul_mod(i, i, n), cc, n); | ||
let mut r = 1; | ||
// We don't perform the gcd-once-in-a-while optimization | ||
// because the plain gcd-every-time algorithm appears to | ||
// outperform, at least on judge.yosupo.jp :) | ||
while d == 1 { | ||
x = y; | ||
for _ in 0..r { | ||
y = f(y); | ||
d = gcd((x - y).abs(), n); | ||
if d != 1 { break; } | ||
} | ||
r *= 2; | ||
} | ||
if d == n { | ||
*c += 1; | ||
continue; | ||
} | ||
return d; | ||
} | ||
} | ||
|
||
/// Outputs (p, e) in p's ascending order. | ||
pub fn factorize(x: i64) -> Vec<(i64, usize)> { | ||
if x <= 1 { return vec![]; } | ||
let mut hm = std::collections::HashMap::new(); | ||
let mut pool = vec![x]; | ||
let mut c = 1; | ||
while let Some(u) = pool.pop() { | ||
if is_prime(u) { | ||
*hm.entry(u).or_insert(0) += 1; | ||
continue; | ||
} | ||
let p = pollard_rho(u, &mut c); | ||
pool.push(p); | ||
pool.push(u / p); | ||
} | ||
let mut v: Vec<_> = hm.into_iter().collect(); | ||
v.sort(); | ||
v | ||
} | ||
} // mod pollard_rho | ||
|
||
// https://yukicoder.me/problems/no/2578 (4) | ||
// Solved with hints | ||
// m <= 10^18 なので m の約数は 10^5 個程度あるので、約数をキーに持つ単純な DP だとうまくいかない。 | ||
// g(t) := \sum{lcm | t} \prod W とすると、g(t) = \prod{a_i | t} (W_i + 1) である。(足すものが乗法的であるため分配法則が使える。) | ||
// {m の約数} のように線型束の直積になっている束について、包除原理は (1 -1 0 0 ...) の直積である。 | ||
// つまり、 f(m) = \sum_{u|m, u is squarefree} (-1)^{#primes(u)} g(t/u) である。 | ||
// これによって、2^(m の素因数の個数) で手間を抑えられるので、高速に計算できる。 | ||
// https://gist.github.com/koba-e964/2de3a6480749241f424c4e110a440503 によれば m の素因数の個数は 15 個以下であるため、2^15 * n 程度の手間である。 | ||
// -> TLE。高速ゼータ変換を使って (m の素因数の個数)n にする必要があった。 | ||
// Tags: product-of-lattices, inclusion-exclusion-principle, zeta-transformation | ||
fn main() { | ||
let t: usize = get(); | ||
let m: i64 = get(); | ||
let pe = pollard_rho::factorize(m); | ||
let l = pe.len(); | ||
for _ in 0..t { | ||
let n: usize = get(); | ||
let b: i64 = get(); | ||
let c: i64 = get(); | ||
let d: i64 = get(); | ||
let a: Vec<i64> = (0..n).map(|_| get()).collect(); | ||
let mut w = vec![MInt::new(b); n]; | ||
for i in 1..n { | ||
w[i] = w[i - 1] * c + d; | ||
} | ||
let mut dp = vec![MInt::new(1); 1 << l]; | ||
for i in 0..n { | ||
if m % a[i] != 0 { | ||
continue; | ||
} | ||
let rem = m / a[i]; | ||
let mut bits = 0; | ||
for j in 0..l { | ||
if rem % pe[j].0 == 0 { | ||
bits |= 1 << j; | ||
} | ||
} | ||
dp[bits] *= w[i] + 1; | ||
} | ||
for i in 0..l { | ||
for bits in 0usize..1 << l { | ||
if (bits & 1 << i) == 0 { | ||
dp[bits] = dp[bits] * dp[bits ^ 1 << i]; | ||
} | ||
} | ||
} | ||
let mut tot = MInt::new(0); | ||
for bits in 0..1usize << l { | ||
if bits.count_ones() % 2 == 0 { | ||
tot += dp[bits]; | ||
} else { | ||
tot -= dp[bits]; | ||
} | ||
} | ||
if m == 1 { | ||
tot -= 1; // exclude the empty set | ||
} | ||
println!("{}", tot); | ||
} | ||
} |
Oops, something went wrong.