Implementation of Latent semantic analysis model. Functionality visualized on the task of finding similar articles in a database.
David Mašek and Kristýna Klesnilová
$ ./init.sh
Install packages as needed on errors and rerun init.
$ ./run.sh # displays address and port of server (e.g. localhost:5000)
- replace data inside
server/data/
- update source code to reflect changes
- recompute LSA -
$ flask update
$ export FLASK_APP=server
# if not already set- modify values in
server/lsa_config.json
- recompute LSA -
$ flask update
$ flask update # may take some time
├── lsa # LSA package
│ ├── data # selected usable data
│ ├── raw_data # unprocessed/large data - not saved to git
│ ├── data.ipynb # notebook for data exploration
│ ├── lsa.py # LSA related code
│ └── select_articles.py # script to select articles
├── server # demo server
│ ├── static
│ ├── templates
│ ├── cache # LSA cache files used by server
│ ├── data # data files used by server
│ ├── __init__.py # server + CLI initialization
│ ├── lsa_config.py # config file with LSA parameters
│ └── views.py # server request handling
├── articles_source.txt # data sources
├── init.sh # install this package
├── README.md
├── run.sh # start server
├── setup.py # package setup file
└── .gitignore
Created as a semestral project for the Searching Web and Multimedia Databases course at FIT CTU.