This component allows you to embed tables using OpenAI embedding algorithms with data provided from your KBC project.
- [TOC]
- API Key (
#api_token
): Obtain your API key from the OpenAI platform settings.
- Column to Embed (
embed_column
): Specify the column that contains the text data to be embedded. - Embedding Model (
model
): The model that will generate the embeddings. Choose from:text-embedding-3-small
text-embedding-3-large
text-embedding-ada-002
Learn more.
- Output Format (
output_format
): Determines if embeddings will be sent to a zipped Lance file or to a Keboola Table (CSV). - Incremental Load (
incremental load
): If enabled, the table will update instead of being overwritten. - Output Table Name (
output_table_name
) - Primary Keys (
primary_keys
):
Generic configuration
{
"#apiKey": "your-openai-api-key",
"model": "ada_002",
"embedColumn": "description",
"outputFormat": "csv"
}
This configuration uses the ada_002
model to embed the description
column and outputs the result in CSV format.
Row configuration
{
"embedColumn": "title",
"destination": {
"output_table_name": "embedded_table",
"incremental_load": true,
"primary_keys": "id"
}
}
In this example, the embedding column is set to title
, and the results are stored in the embedded_table
with incremental loading enabled. The primary key is the id
column.
If required, change the local data folder (the CUSTOM_FOLDER
placeholder) path to your custom path in the docker-compose.yml
file:
volumes:
- ./:/code
- ./CUSTOM_FOLDER:/data
Clone this repository, initialize the workspace, and run the component with the following command:
git clone [email protected]:keboola/app-transformation-lanceDB-embeddings.git
cd app-transformation-lanceDB-embeddings
docker-compose build
docker-compose run --rm dev
Run the test suite and lint check using this command:
docker-compose run --rm test
For information about deployment and integration with KBC, please refer to the deployment section of developers documentation.