Multi-Modal data analysis framework for medical applications
GCN
Multi-Modality
Alzeihmer_Prediction
COVID-19_Classification
Skin_Lesion_Detection
Task | Classes | Dataset | Modality |
---|---|---|---|
Alzeihmer Disease Prediction | CN - Cognitively normaL,MCI - mild cognitive impairment or AD - probable Alzheimer's Disease | TADPOLE | Clinical Features |
Covid-19 Disease Classification | Covid Positive or Negative | Covid-19 iCTCF | Clinical Features + Images |
Skin Lesion Detection | Melanocytic nevi, Melanoma, Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Dermatofibroma | HAM10K | Clinical Features + Images |
We have used an ensemble of 4 GCN's
- GCN - Standard GCN
- MGMC - Multi-Graph Matrix Completion
- GAT - Graph Attention Networks
- DGM - Differentiable Graph Module
- Create a conda env from the requirements file
conda create -y --name hydragcn python=3.7
conda install -c conda-forge --file requirements.txt
conda activate hydragcn
- Create Dataloader
Update for each dataset the classes in
/base/setup/dataset_setup.py
- Update the Configurations
Go to /application/loop_experiments.py
# Choose one dataset to work on
dataset_list = ['TADPOLE']
dataset_list = ['COVIDiCTCF']
dataset_list = ['HAM10K']
# Choose the model ensemble to work on
model_list = ['GCN']
model_list = ['FullGAT']
model_list = ['MGMC']
model_list = ['CDGM']
model_list = ['Hydra']
# Choose the corresponding yaml configuration OR make your own @'../base/configs/<dataset>/<model_you_like>.yaml'
model_yaml_dir = '../base/configs/TADPOLE/MGMC.yaml'
model_yaml_dir = '../base/configs/COVID/MGMC.yaml'
model_yaml_dir = '../base/configs/COVID/Hydra.yaml'
model_yaml_dir = '../base/configs/HAM10K/Hydra_HAM10K.yaml'
# Starting point of our code
python /applications/loop_experiments.py
Problems ? Happy Debugging !