למידת מכונה ולמידה עמוקה בעברית
Add a star if the repository helped you :)
For any issue please contact us at [email protected].
Authors:
Chapter authors:
contributors:
Part I:
Part II:
- 3. Linear Neural Networks (Regression problems)
- 4. Deep Neural Networks
- 5. Convolutional Neural Networks
- 6. Recurrent Neural Networks
- 7. Deep Generative Models
- 8. Attention Mechanism
Part III:
-
1.1.1 The Basic Concept
-
1.1.2 Data, Tasks and Learning
-
1.2.1 Linear Algebra
-
1.2.2 Calculus
-
1.2.3 Probability
-
2.1.1 Support Vector Machines (SVM)
-
2.1.2 Naïve Bayes
-
2.1.3 K-nearest neighbors (K-NN)
-
2.1.4 Qadratic\Linear Discriminant Analysis (QDA\LDA)
-
2.1.5 Decision Trees
-
2.2.1 K-means
-
2.2.2 Mixture Models
-
2.2.3 Expectation–maximization (EM)
-
2.2.4 Hierarchical Clustering
-
2.2.5 Local Outlier Factor
-
2.3.1 Principal Components Analysis (PCA)
-
2.3.2 t-distributed Stochastic Neighbor Embedding (t-SNE)
-
2.3.3 Uniform Manifold Approximation and Projection (UMAP)
-
2.4.1 Introduction to Ensemble Learning
-
2.4.2 Bagging
-
2.4.3 Boosting
-
3.1.1 The Basic Concept
-
3.1.2 Gradient Descent
-
3.1.3 Regularization and Cross Validation
-
3.1.4 Linear Regression as Classifier
-
3.2.1 Logistic Regression
-
3.2.2 Cross Entropy and Gradient descent
-
3.2.3 Optimization
-
3.2.4 SoftMax Regression – Multi Class Logistic Regression
-
3.2.5 SoftMax Regression as Neural Network
-
4.1.1 From a Single Neuron to Deep Neural Network
-
4.1.2 Activation Function
-
4.1.3 Xor
-
4.2.1 Computational Graphs
-
4.2.2 Forward and Backward propagation
-
4.3.1 Data Normalization
-
4.3.2 Weight Initialization
-
4.3.3 Batch Normalization
-
4.3.4 Mini Batch
-
4.3.5 Gradient Descent Optimization Algorithms
-
4.4.1 Regularization
-
4.4.2 Weight Decay
-
4.4.3 Model Ensembles and Drop Out
-
4.4.4 Data Augmentation
-
5.1.1 From Fully-Connected Layers to Convolutions
-
5.1.2 Padding, Stride and Dilation
-
5.1.3 Pooling
-
5.1.4 Training
-
5.1.5 Convolutional Neural Networks (LeNet)
-
5.2.1 AlexNet
-
5.2.2 VGG
-
5.2.3 GoogleNet
-
5.2.4 Residual Networks (ResNet)
-
5.2.5 Densely Connected Networks (DenseNet)
-
5.2.6 U-Net
-
5.2.7 Transfer Learning
-
6.1.1 Recurrent Neural Networks
-
6.1.2 Learning Parameters
-
6.2.1 Long Short-Term Memory (LSTM)
-
6.2.2 Gated Recurrent Units (GRU)
-
6.2.3 Deep RNN
-
6.2.4 Bidirectional RNN
-
6.2.5 Sequence to Sequence Learning
-
7.1.1 Dimensionality Reduction
-
7.1.2 Autoencoders (AE)
-
7.1.3 Variational AutoEncoders (VAE)
-
7.2.1 Generator and Discriminator
-
7.2.2 DCGAN
-
7.2.3 Conditional GAN (cGAN)
-
7.2.4 Pix2Pix
-
7.2.5 CycleGAN
-
7.2.6 Progressively Growing (ProGAN)
-
7.2.7 StyleGAN
-
7.2.8 Wasserstein GAN
-
7.3.1 PixelRNN
-
7.3.2 PixelCNN
-
7.3.3 Gated PixelCNN
-
7.3.4 PixelCNN++
-
8.1.1 Attention in Seq2Seq Models
-
8.1.2 Bahdanau Attention and Luong Attention
-
8.2.1 Positional Encoding
-
8.2.2 Self-Attention Layer
-
8.2.3 Multi Head Attention
-
8.2.4 Transformer End to End
-
8.2.5 Transformer Applications
-
9.1.1 R-CNN
-
9.1.2 You Only Look Once (YOLO)
-
9.1.3 Single Shot Detector (SSD)
-
9.1.4 Spatial Pyramid Pooling (SPP-net)
-
9.1.5 Feature Pyramid Networks
-
9.1.6 Deformable Convolutional Networks
-
9.1.7 DE:TR: Object Detection with Transformers
-
9.2.1 Semantic Segmentation vs. Instance Segmentation
-
9.2.2 SegNet neural network
-
9.2.3 Atrous convolutions
-
9.2.4 Atrous Spatial Pyramidal Pooling
-
9.2.5 Conditional Random Fields usage for improving final output
-
9.2.6 See More Than Once -- Kernel-Sharing Atrous Convolution
-
9.3.1 Face Recognition
-
9.3.2 Pose Estimation
-
9.5.1 The Problem
-
9.5.2 Metric Learning
-
9.5.3 Meta-Learning (Learning-to-Learn)
-
9.5.4 Data Augmentation
-
9.5.5 Zero-Shot Learning
-
10.1.1 N-gram
-
10.1.2 Word Representation (Vectors)
-
10.1.3 Word2Vec/GloVe
-
10.1.4 ELMo - Embeddings from Language Model
-
10.1.5 Attention/Transformer (GPT)
-
10.2.1 Neural Machine Translation by Jointly Learning to Align and Translate
-
10.2.2 Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
-
10.2.3 ConvS2S
-
10.2.4 RNMT+
-
10.2.5 Transformer and Transformer based models
-
10.2.6 Named Entity Recognition (NER)
-
10.2.7 Bilingual Evaluation Understudy (BLEU score)
-
10.2.8 Unsupervised Machine Translation
-
10.3.1 Connectionist Temporal Classification
-
10.3.2 Listen, Attend, and Spell
-
10.3.3 Very Deep Convolutional Networks for End-to-End Speech Recognition
Extractive Text Summarization:
-
10.4.1 TextRank
-
10.4.2 LexRank
-
10.4.3 Luhn
-
10.4.4 Latent Semantic Analysis, LSA
-
10.4.5 KL-Sum
Abstractive Text Summarization:
-
10.4.6 T5 Transformers
-
10.4.7 BART Transformers
-
10.4.8 GPT-2 Transformers
-
10.4.9 XLM Transformers
-
11.1.1 Markov Decision Process (MDP) and RL
-
11.1.2 Planning
-
11.1.3 Learning Algorithms
כל הזכויות שמורות @