Skip to content

SOTA discrete acoustic codec models with 40 tokens per second for audio language modeling

License

Notifications You must be signed in to change notification settings

jishengpeng/WavTokenizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WavTokenizer

SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling

arXiv demo model

🎉🎉 with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!

🎉🎉 with WavTokenizer, You can get strong reconstruction results.

🎉🎉 WavTokenizer owns rich semantic information and is build for audio language models such as GPT-4o.

🔥 News

  • 2024.11.22: We release WavChat (A survey of spoken dialogue models about 60 pages) on arxiv.
  • 2024.10.22: We update WavTokenizer on arxiv and release WavTokenizer-Large checkpoint.
  • 2024.09.09: We release WavTokenizer-medium checkpoint on huggingface.
  • 2024.08.31: We release WavTokenizer on arxiv.

result

Installation

To use WavTokenizer, install it using:

conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt

Infer

Part1: Reconstruct audio from raw wav

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer


device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)


wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) 
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)

Part2: Generating discrete codecs

from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer

device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)

Part3: Audio reconstruction through codecs

# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])  
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)

Available models

🤗 links to the Huggingface model hub.

Model name HuggingFace Corpus Token/s Domain Open-Source
WavTokenizer-small-600-24k-4096 🤗 LibriTTS 40 Speech
WavTokenizer-small-320-24k-4096 🤗 LibriTTS 75 Speech
WavTokenizer-medium-320-24k-4096 🤗 10000 Hours 75 Speech, Audio, Music
WavTokenizer-large-600-24k-4096 🤗 80000 Hours 40 Speech, Audio, Music
WavTokenizer-large-320-24k-4096 🤗 80000 Hours 75 Speech, Audio, Music

Training

Step1: Prepare train dataset

# Process the data into a form similar to ./data/demo.txt

Step2: Modifying configuration files

# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device

Step3: Start training process

Refer to Pytorch Lightning documentation for details about customizing the training pipeline.

cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml

Citation

If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:

@article{ji2024wavtokenizer,
  title={Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling},
  author={Ji, Shengpeng and Jiang, Ziyue and Wang, Wen and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Cheng, Xize and Wang, Zehan and Li, Ruiqi and others},
  journal={arXiv preprint arXiv:2408.16532},
  year={2024}
}

@article{ji2024language,
  title={Language-codec: Reducing the gaps between discrete codec representation and speech language models},
  author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou},
  journal={arXiv preprint arXiv:2402.12208},
  year={2024}
}