Skip to content

Commit

Permalink
20250109 - update bib
Browse files Browse the repository at this point in the history
  • Loading branch information
isaactpetersen committed Jan 9, 2025
1 parent f63a1ad commit e27b4d1
Showing 1 changed file with 14 additions and 0 deletions.
14 changes: 14 additions & 0 deletions book.bib
Original file line number Diff line number Diff line change
Expand Up @@ -111547,6 +111547,20 @@ @Article{Sayal2025
url = {https://acamh.onlinelibrary.wiley.com/doi/abs/10.1111/jcpp.14090},
}


@Article{Cheung2024,
author = {Cheung, Gordon W. and Cooper-Thomas, Helena D. and Lau, Rebecca S. and Wang, Linda C.},
journal = {Asia Pacific Journal of Management},
title = {Reporting reliability, convergent and discriminant validity with structural equation modeling: {A} review and best-practice recommendations},
year = {2024},
number = {2},
pages = {745--783},
volume = {41},
abstract = {Many constructs in management studies, such as perceptions, personalities, attitudes, and behavioral intentions, are not directly observable. Typically, empirical studies measure such constructs using established scales with multiple indicators. When the scales are used in a different population, the items are translated into other languages or revised to adapt to other populations, it is essential for researchers to report the quality of measurement scales before using them to test hypotheses. Researchers commonly report the quality of these measurement scales based on Cronbach’s alpha and confirmatory factor analysis results. However, these results are usually inadequate and sometimes inappropriate. Moreover, researchers rarely consider sampling errors for these psychometric quality measures. In this best practice paper, we first critically review the most frequently-used approaches in empirical studies to evaluate the quality of measurement scales when using structural equation modeling. Next, we recommend best practices in assessing reliability, convergent and discriminant validity based on multiple criteria and taking sampling errors into consideration. Then, we illustrate with numerical examples the application of a specifically-developed R package, measureQ, that provides a one-stop solution for implementing the recommended best practices and a template for reporting the results. measureQ is easy to implement, even for those new to R. Our overall aim is to provide a best-practice reference for future authors, reviewers, and editors in reporting and reviewing the quality of measurement scales in empirical management studies.},
doi = {10.1007/s10490-023-09871-y},
url = {https://doi.org/10.1007/s10490-023-09871-y},
}

@Comment{jabref-meta: databaseType:bibtex;}

@Comment{jabref-meta: saveActions:enabled;
Expand Down

0 comments on commit e27b4d1

Please sign in to comment.