This repository has been archived by the owner on Aug 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 491
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support inference performance test in benchmark
Change-Id: Idf4fbc6555d757913ef5f4e8a72a92aa1b7d5d24 Change-Id: Idf4fbc6555d757913ef5f4e8a72a92aa1b7d5d24 Change-Id: Idf4fbc6555d757913ef5f4e8a72a92aa1b7d5d24 Change-Id: Idf4fbc6555d757913ef5f4e8a72a92aa1b7d5d24 Change-Id: Idf4fbc6555d757913ef5f4e8a72a92aa1b7d5d24
- Loading branch information
Showing
21 changed files
with
78,508 additions
and
69 deletions.
There are no files selected for viewing
348 changes: 348 additions & 0 deletions
348
models/intel_optimized_models/benchmark/alexnet/deploy.prototxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,348 @@ | ||
name: "AlexNet" | ||
layer { | ||
name: "data" | ||
type: "DummyData" | ||
top: "data" | ||
dummy_data_param { | ||
shape: { dim: 256 dim: 3 dim: 227 dim: 227 } | ||
data_filler { | ||
type: "constant" | ||
value: 0.01 | ||
} | ||
} | ||
} | ||
|
||
layer { | ||
name: "conv1" | ||
type: "Convolution" | ||
bottom: "data" | ||
top: "conv1" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
convolution_param { | ||
num_output: 96 | ||
kernel_size: 11 | ||
stride: 4 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu1" | ||
type: "ReLU" | ||
bottom: "conv1" | ||
top: "conv1" | ||
} | ||
layer { | ||
name: "norm1" | ||
type: "LRN" | ||
bottom: "conv1" | ||
top: "norm1" | ||
lrn_param { | ||
local_size: 5 | ||
alpha: 0.0001 | ||
beta: 0.75 | ||
} | ||
} | ||
layer { | ||
name: "pool1" | ||
type: "Pooling" | ||
bottom: "norm1" | ||
top: "pool1" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layer { | ||
name: "conv2" | ||
type: "Convolution" | ||
bottom: "pool1" | ||
top: "conv2" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
convolution_param { | ||
num_output: 256 | ||
pad: 2 | ||
kernel_size: 5 | ||
group: 2 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu2" | ||
type: "ReLU" | ||
bottom: "conv2" | ||
top: "conv2" | ||
} | ||
layer { | ||
name: "norm2" | ||
type: "LRN" | ||
bottom: "conv2" | ||
top: "norm2" | ||
lrn_param { | ||
local_size: 5 | ||
alpha: 0.0001 | ||
beta: 0.75 | ||
} | ||
} | ||
layer { | ||
name: "pool2" | ||
type: "Pooling" | ||
bottom: "norm2" | ||
top: "pool2" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layer { | ||
name: "conv3" | ||
type: "Convolution" | ||
bottom: "pool2" | ||
top: "conv3" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
convolution_param { | ||
num_output: 384 | ||
pad: 1 | ||
kernel_size: 3 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu3" | ||
type: "ReLU" | ||
bottom: "conv3" | ||
top: "conv3" | ||
} | ||
layer { | ||
name: "conv4" | ||
type: "Convolution" | ||
bottom: "conv3" | ||
top: "conv4" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
convolution_param { | ||
num_output: 384 | ||
pad: 1 | ||
kernel_size: 3 | ||
group: 2 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu4" | ||
type: "ReLU" | ||
bottom: "conv4" | ||
top: "conv4" | ||
} | ||
layer { | ||
name: "conv5" | ||
type: "Convolution" | ||
bottom: "conv4" | ||
top: "conv5" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
convolution_param { | ||
num_output: 256 | ||
pad: 1 | ||
kernel_size: 3 | ||
group: 2 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu5" | ||
type: "ReLU" | ||
bottom: "conv5" | ||
top: "conv5" | ||
} | ||
layer { | ||
name: "pool5" | ||
type: "Pooling" | ||
bottom: "conv5" | ||
top: "pool5" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layer { | ||
name: "fc6" | ||
type: "InnerProduct" | ||
bottom: "pool5" | ||
top: "fc6" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
inner_product_param { | ||
num_output: 4096 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.005 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu6" | ||
type: "ReLU" | ||
bottom: "fc6" | ||
top: "fc6" | ||
} | ||
layer { | ||
name: "drop6" | ||
type: "Dropout" | ||
bottom: "fc6" | ||
top: "fc6" | ||
dropout_param { | ||
dropout_ratio: 0.5 | ||
} | ||
} | ||
layer { | ||
name: "fc7" | ||
type: "InnerProduct" | ||
bottom: "fc6" | ||
top: "fc7" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
inner_product_param { | ||
num_output: 4096 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.005 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "relu7" | ||
type: "ReLU" | ||
bottom: "fc7" | ||
top: "fc7" | ||
} | ||
layer { | ||
name: "drop7" | ||
type: "Dropout" | ||
bottom: "fc7" | ||
top: "fc7" | ||
dropout_param { | ||
dropout_ratio: 0.5 | ||
} | ||
} | ||
layer { | ||
name: "fc8" | ||
type: "InnerProduct" | ||
bottom: "fc7" | ||
top: "fc8" | ||
param { | ||
lr_mult: 1 | ||
decay_mult: 1 | ||
} | ||
param { | ||
lr_mult: 2 | ||
decay_mult: 0 | ||
} | ||
inner_product_param { | ||
num_output: 1000 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0 | ||
} | ||
} | ||
} | ||
layer { | ||
name: "prob" | ||
type: "Softmax" | ||
bottom: "fc8" | ||
top: "prob" | ||
} |
Oops, something went wrong.