Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Integrate Context-Aware Chunking and PDF Support #284

Merged
merged 11 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion requirements.txt
bbrowning marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -1,14 +1,18 @@
# SPDX-License-Identifier: Apache-2.0
click>=8.1.7,<9.0.0
datasets>=2.18.0,<3.0.0
docling>=1.15.0,<2.0.0
khaledsulayman marked this conversation as resolved.
Show resolved Hide resolved
GitPython>=3.1.42,<4.0.0
httpx>=0.25.0,<1.0.0
instructlab-schema>=0.4.0
langchain-text-splitters
openai>=1.13.3,<2.0.0
# Note: this dependency goes along with langchain-text-splitters and may be
# removed once that one is removed.
# do not use 8.4.0 due to a bug in the library
# https://github.com/instructlab/instructlab/issues/1389
openai>=1.13.3,<2.0.0
tabulate>=0.9.0
tenacity>=8.3.0,!=8.4.0
torch>=2.3.0,<2.5.0
transformers>=4.41.2
xdg-base-dirs>=6.0.1
31 changes: 20 additions & 11 deletions src/instructlab/sdg/generate_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@

# Third Party
# instructlab - All of these need to go away (other than sdg) - issue #6
from datasets import Dataset
from xdg_base_dirs import xdg_data_dirs, xdg_data_home
import openai

Expand Down Expand Up @@ -268,7 +267,7 @@ def generate_data(
model_name: Optional[str] = None,
num_cpus: Optional[int] = None,
num_instructions_to_generate: Optional[int] = 30,
taxonomy: Optional[str] = None,
taxonomy: Optional[str] = None, # TODO rename to taxonomy_path to match config
taxonomy_base: Optional[str] = None,
output_dir: Optional[str] = None,
# TODO - not used and should be removed from the CLI
Expand Down Expand Up @@ -309,12 +308,16 @@ def generate_data(
if not (taxonomy and os.path.exists(taxonomy)):
raise GenerateException(f"Error: taxonomy ({taxonomy}) does not exist.")

leaf_nodes = read_taxonomy_leaf_nodes(taxonomy, taxonomy_base, yaml_rules)
date_suffix = datetime.now().replace(microsecond=0).isoformat().replace(":", "_")
document_output_dir = Path(output_dir) / f"documents-{date_suffix}"

leaf_nodes = read_taxonomy_leaf_nodes(
taxonomy, taxonomy_base, yaml_rules, document_output_dir
)
if not leaf_nodes:
raise GenerateException("Error: No new leaf nodes found in the taxonomy.")

name = Path(model_name).stem # Just in case it is a file path
date_suffix = datetime.now().replace(microsecond=0).isoformat().replace(":", "_")
output_file_messages = f"messages_{name}_{date_suffix}.jsonl"
output_file_test = f"test_{name}_{date_suffix}.jsonl"
output_file_train = f"train_{name}_{date_suffix}.jsonl"
Expand Down Expand Up @@ -362,25 +365,31 @@ def generate_data(
for leaf_node in leaf_nodes.values():
is_knowledge = False
leaf_node_path = leaf_node[0]["taxonomy_path"].replace("->", "_")
samples = leaf_node_to_samples(leaf_node, server_ctx_size, chunk_word_count)
samples = leaf_node_to_samples(
leaf_node,
taxonomy,
server_ctx_size,
chunk_word_count,
document_output_dir,
model_name,
)

if not samples:
raise GenerateException("Error: No samples found in leaf node.")

if samples[0].get("document"):
if "document" in samples.column_names:
pipe = knowledge_pipe
is_knowledge = True

elif samples[0].get("seed_context"):
elif "seed_context" in samples.column_names:
pipe = grounded_skills_pipe

else:
pipe = freeform_skills_pipe

logger.debug("Samples: %s", samples)
ds = Dataset.from_list(samples)
logger.debug("Dataset: %s", ds)
new_generated_data = pipe.generate(ds, leaf_node_path)

new_generated_data = pipe.generate(samples, leaf_node_path)
if len(new_generated_data) == 0:
empty_sdg_leaf_nodes.append(leaf_node_path)
logger.warning("Empty dataset for qna node: %s", leaf_node_path)
Expand All @@ -398,7 +407,7 @@ def generate_data(
generate_eval_task_data(
mmlu_bench_pipe,
leaf_node_path,
ds,
samples,
output_dir,
date_suffix,
)
Expand Down
1 change: 0 additions & 1 deletion src/instructlab/sdg/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,6 @@ def _generate_single(self, dataset) -> Dataset:
drop_duplicates_cols = block_prop.get("drop_duplicates", False)
block = block_type(self.ctx, self, block_name, **block_config)
logger.info("Running block: %s", block_name)
logger.info(dataset)

# Execute the block and wrap errors with the block name/type
dataset = block.generate(dataset)
Expand Down
Loading
Loading