Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Patched DataFusion, Oct 15, 2024 #47

Closed
wants to merge 12 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions datafusion/catalog/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,11 @@
// specific language governing permissions and limitations
// under the License.

// Disable clippy lints that were introduced after this code was written
#![allow(clippy::needless_lifetimes)]
#![allow(clippy::unnecessary_lazy_evaluations)]
#![allow(clippy::empty_line_after_doc_comments)]

mod catalog;
mod dynamic_file;
mod schema;
Expand Down
4 changes: 4 additions & 0 deletions datafusion/common/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,10 @@
// under the License.
// Make cheap clones clear: https://github.com/apache/datafusion/issues/11143
#![deny(clippy::clone_on_ref_ptr)]
// Disable clippy lints that were introduced after this code was written
#![allow(clippy::needless_lifetimes)]
#![allow(clippy::unnecessary_lazy_evaluations)]
#![allow(clippy::empty_line_after_doc_comments)]

mod column;
mod dfschema;
Expand Down
20 changes: 20 additions & 0 deletions datafusion/common/src/stats.rs
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,26 @@ impl Statistics {
self
}

/// Project the statistics to the given column indices.
///
/// For example, if we had statistics for columns `{"a", "b", "c"}`,
/// projecting to `vec![2, 1]` would return statistics for columns `{"c",
/// "b"}`.
pub fn project(mut self, projection: Option<&Vec<usize>>) -> Self {
let Some(projection) = projection else {
return self;
};

// todo: it would be nice to avoid cloning column statistics if
// possible (e.g. if the projection did not contain duplicates)
self.column_statistics = projection
.iter()
.map(|&i| self.column_statistics[i].clone())
.collect();

self
}

/// Calculates the statistics after `fetch` and `skip` operations apply.
/// Here, `self` denotes per-partition statistics. Use the `n_partitions`
/// parameter to compute global statistics in a multi-partition setting.
Expand Down
48 changes: 48 additions & 0 deletions datafusion/core/src/dataframe/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2623,6 +2623,54 @@ mod tests {
Ok(())
}

#[tokio::test]
async fn test_aggregate_with_union() -> Result<()> {
let df = test_table().await?;

let df1 = df
.clone()
// GROUP BY `c1`
.aggregate(vec![col("c1")], vec![min(col("c2"))])?
// SELECT `c1` , min(c2) as `result`
.select(vec![col("c1"), min(col("c2")).alias("result")])?;
let df2 = df
.clone()
// GROUP BY `c1`
.aggregate(vec![col("c1")], vec![max(col("c3"))])?
// SELECT `c1` , max(c3) as `result`
.select(vec![col("c1"), max(col("c3")).alias("result")])?;

let df_union = df1.union(df2)?;
let df = df_union
// GROUP BY `c1`
.aggregate(
vec![col("c1")],
vec![sum(col("result")).alias("sum_result")],
)?
// SELECT `c1`, sum(result) as `sum_result`
.select(vec![(col("c1")), col("sum_result")])?;

let df_results = df.collect().await?;

#[rustfmt::skip]
assert_batches_sorted_eq!(
[
"+----+------------+",
"| c1 | sum_result |",
"+----+------------+",
"| a | 84 |",
"| b | 69 |",
"| c | 124 |",
"| d | 126 |",
"| e | 121 |",
"+----+------------+"
],
&df_results
);

Ok(())
}

#[tokio::test]
async fn test_aggregate_subexpr() -> Result<()> {
let df = test_table().await?;
Expand Down
9 changes: 9 additions & 0 deletions datafusion/core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,15 @@
// specific language governing permissions and limitations
// under the License.
#![warn(missing_docs, clippy::needless_borrow)]
// Disable clippy lints that were introduced after this code was written
#![allow(clippy::needless_return)]
#![allow(clippy::needless_lifetimes)]
#![allow(clippy::unnecessary_lazy_evaluations)]
#![allow(clippy::empty_line_after_doc_comments)]
#![allow(clippy::unnecessary_filter_map)]
#![allow(clippy::manual_div_ceil)]
#![allow(clippy::unnecessary_first_then_check)]
#![allow(missing_docs)]

//! [DataFusion] is an extensible query engine written in Rust that
//! uses [Apache Arrow] as its in-memory format. DataFusion's target users are
Expand Down
34 changes: 17 additions & 17 deletions datafusion/core/src/physical_optimizer/enforce_sorting.rs
Original file line number Diff line number Diff line change
Expand Up @@ -845,17 +845,17 @@ mod tests {

let physical_plan = bounded_window_exec("non_nullable_col", sort_exprs, filter);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" FilterExec: NOT non_nullable_col@1",
" SortExec: expr=[non_nullable_col@1 ASC NULLS LAST], preserve_partitioning=[false]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" FilterExec: NOT non_nullable_col@1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
Expand Down Expand Up @@ -1722,15 +1722,15 @@ mod tests {
// corresponding SortExecs together. Also, the inputs of these `SortExec`s
// are not necessarily the same to be able to remove them.
let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 DESC NULLS LAST]",
" UnionExec",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = [
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
Expand Down Expand Up @@ -1760,14 +1760,14 @@ mod tests {

// The `WindowAggExec` can get its required sorting from the leaf nodes directly.
// The unnecessary SortExecs should be removed
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC,non_nullable_col@1 ASC]",
" UnionExec",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
Expand Down Expand Up @@ -2060,15 +2060,15 @@ mod tests {
let physical_plan =
bounded_window_exec("non_nullable_col", sort_exprs1, window_agg2);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
assert_optimized!(expected_input, expected_optimized, physical_plan, true);
Expand Down Expand Up @@ -2134,7 +2134,7 @@ mod tests {
let expected_input = vec![
"SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[0]",
];
assert_eq!(
Expand Down Expand Up @@ -2386,15 +2386,15 @@ mod tests {
let physical_plan = bounded_window_exec("a", sort_exprs, spm);

let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [a@0 ASC,b@1 ASC]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC,b@1 ASC",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], has_header=false",
];
let expected_optimized = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CoalescePartitionsExec",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10",
Expand Down
Loading
Loading