-
Notifications
You must be signed in to change notification settings - Fork 95
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Colflor #104
Open
ManuelFay
wants to merge
26
commits into
main
Choose a base branch
from
colflor
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Colflor #104
Changes from all commits
Commits
Show all changes
26 commits
Select commit
Hold shift + click to select a range
5842c91
train colflor
ManuelFay 89390d9
lint
ManuelFay cd999f9
fix
ManuelFay cbb5bce
fux
ManuelFay 639ed19
fux
ManuelFay 0a00dce
ff
ManuelFay e36d674
ff
ManuelFay 4b14cf3
test
ManuelFay 12bb5bb
train colflor
ManuelFay 6a73851
fix
ManuelFay 88597ac
ff
ManuelFay e6a1d1a
letsgo
ManuelFay abc69f7
bfloat
ManuelFay 375a1a8
remove bp
ManuelFay fc976fc
gp
ManuelFay ab391b2
debug breakpoint
ManuelFay 7ead7e7
bfloat16
ManuelFay fc218f2
test
ManuelFay a81ffd7
go
ManuelFay 01256e2
fix
ManuelFay 2744d6d
little fix
ManuelFay e4bc4f9
mini debug training
ManuelFay 12bfbe3
colflor
ManuelFay 4bea623
timm
ManuelFay b39dd8d
remove proj init
ManuelFay e04af42
query
ManuelFay File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
from .florence2 import ColFlor, ColFlorProcessor | ||
from .idefics_2 import BiIdefics2, ColIdefics2, ColIdefics2Processor | ||
from .paligemma import BiPali, BiPaliProcessor, BiPaliProj, ColPali, ColPaliProcessor | ||
from .qwen2 import BiQwen2, BiQwen2Processor, ColQwen2, ColQwen2Processor |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .colflor import ColFlor, ColFlorProcessor |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from .modeling_colflor import ColFlor | ||
from .processing_colflor import ColFlorProcessor |
339 changes: 339 additions & 0 deletions
339
colpali_engine/models/florence2/colflor/configuration_florence2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,339 @@ | ||||||||||||||
# ruff: noqa | ||||||||||||||
# coding=utf-8 | ||||||||||||||
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | ||||||||||||||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||||||||||||||
# you may not use this file except in compliance with the License. | ||||||||||||||
# You may obtain a copy of the License at | ||||||||||||||
# | ||||||||||||||
# http://www.apache.org/licenses/LICENSE-2.0 | ||||||||||||||
# | ||||||||||||||
# Unless required by applicable law or agreed to in writing, software | ||||||||||||||
# distributed under the License is distributed on an "AS IS" BASIS, | ||||||||||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||||||||||
# See the License for the specific language governing permissions and | ||||||||||||||
# limitations under the License. | ||||||||||||||
import warnings | ||||||||||||||
|
||||||||||||||
""" Florence-2 configuration""" | ||||||||||||||
Comment on lines
+15
to
+17
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||
|
||||||||||||||
|
||||||||||||||
from transformers.configuration_utils import PretrainedConfig | ||||||||||||||
from transformers.utils import logging | ||||||||||||||
|
||||||||||||||
logger = logging.get_logger(__name__) | ||||||||||||||
|
||||||||||||||
class Florence2VisionConfig(PretrainedConfig): | ||||||||||||||
r""" | ||||||||||||||
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel | ||||||||||||||
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||||||||||||||
defaults will yield a similar configuration to that of the Florence2VisionModel architecture. | ||||||||||||||
|
||||||||||||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||||||||||||||
documentation from [`PretrainedConfig`] for more information. | ||||||||||||||
|
||||||||||||||
Args: | ||||||||||||||
drop_path_rate (`float`, *optional*, defaults to 0.1): | ||||||||||||||
The dropout rate of the drop path layer. | ||||||||||||||
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]): | ||||||||||||||
The patch size of the image. | ||||||||||||||
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]): | ||||||||||||||
The patch stride of the image. | ||||||||||||||
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]): | ||||||||||||||
The patch padding of the image. | ||||||||||||||
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]): | ||||||||||||||
Whether to apply layer normalization before the patch embedding layer. | ||||||||||||||
enable_checkpoint (`bool`, *optional*, defaults to False): | ||||||||||||||
Whether to enable checkpointing. | ||||||||||||||
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]): | ||||||||||||||
The dimension of the embedding layer. | ||||||||||||||
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): | ||||||||||||||
The number of attention heads. | ||||||||||||||
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): | ||||||||||||||
The number of groups. | ||||||||||||||
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]): | ||||||||||||||
The depth of the model. | ||||||||||||||
window_size (`int`, *optional*, defaults to 12): | ||||||||||||||
The window size of the model. | ||||||||||||||
projection_dim (`int`, *optional*, defaults to 1024): | ||||||||||||||
The dimension of the projection layer. | ||||||||||||||
visual_temporal_embedding (`dict`, *optional*): | ||||||||||||||
The configuration of the visual temporal embedding. | ||||||||||||||
image_pos_embed (`dict`, *optional*): | ||||||||||||||
The configuration of the image position embedding. | ||||||||||||||
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]): | ||||||||||||||
The source of the image feature. | ||||||||||||||
Example: | ||||||||||||||
|
||||||||||||||
```python | ||||||||||||||
>>> from transformers import Florence2VisionConfig, Florence2VisionModel | ||||||||||||||
|
||||||||||||||
>>> # Initializing a Florence2 Vision style configuration | ||||||||||||||
>>> configuration = Florence2VisionConfig() | ||||||||||||||
|
||||||||||||||
>>> # Initializing a model (with random weights) | ||||||||||||||
>>> model = Florence2VisionModel(configuration) | ||||||||||||||
|
||||||||||||||
>>> # Accessing the model configuration | ||||||||||||||
>>> configuration = model.config | ||||||||||||||
```""" | ||||||||||||||
|
||||||||||||||
model_type = "florence2_vision" | ||||||||||||||
keys_to_ignore_at_inference = ["past_key_values"] | ||||||||||||||
|
||||||||||||||
def __init__( | ||||||||||||||
self, | ||||||||||||||
drop_path_rate=0.1, | ||||||||||||||
patch_size=[7, 3, 3, 3], | ||||||||||||||
patch_stride=[4, 2, 2, 2], | ||||||||||||||
patch_padding=[3, 1, 1, 1], | ||||||||||||||
patch_prenorm=[False, True, True, True], | ||||||||||||||
enable_checkpoint=False, | ||||||||||||||
dim_embed=[256, 512, 1024, 2048], | ||||||||||||||
num_heads=[8, 16, 32, 64], | ||||||||||||||
num_groups=[8, 16, 32, 64], | ||||||||||||||
depths=[1, 1, 9, 1], | ||||||||||||||
window_size=12, | ||||||||||||||
projection_dim=1024, | ||||||||||||||
visual_temporal_embedding=None, | ||||||||||||||
image_pos_embed=None, | ||||||||||||||
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"], | ||||||||||||||
**kwargs, | ||||||||||||||
): | ||||||||||||||
self.drop_path_rate = drop_path_rate | ||||||||||||||
self.patch_size = patch_size | ||||||||||||||
self.patch_stride = patch_stride | ||||||||||||||
self.patch_padding = patch_padding | ||||||||||||||
self.patch_prenorm = patch_prenorm | ||||||||||||||
self.enable_checkpoint = enable_checkpoint | ||||||||||||||
self.dim_embed = dim_embed | ||||||||||||||
self.num_heads = num_heads | ||||||||||||||
self.num_groups = num_groups | ||||||||||||||
self.depths = depths | ||||||||||||||
self.window_size = window_size | ||||||||||||||
self.projection_dim = projection_dim | ||||||||||||||
self.visual_temporal_embedding = visual_temporal_embedding | ||||||||||||||
self.image_pos_embed = image_pos_embed | ||||||||||||||
self.image_feature_source = image_feature_source | ||||||||||||||
|
||||||||||||||
super().__init__(**kwargs) | ||||||||||||||
|
||||||||||||||
|
||||||||||||||
|
||||||||||||||
class Florence2LanguageConfig(PretrainedConfig): | ||||||||||||||
r""" | ||||||||||||||
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART | ||||||||||||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||||||||||||||
defaults will yield a similar configuration to that of the BART | ||||||||||||||
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. | ||||||||||||||
|
||||||||||||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||||||||||||||
documentation from [`PretrainedConfig`] for more information. | ||||||||||||||
|
||||||||||||||
|
||||||||||||||
Args: | ||||||||||||||
vocab_size (`int`, *optional*, defaults to 51289): | ||||||||||||||
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the | ||||||||||||||
`inputs_ids` passed when calling [`Florence2LanguageModel`]. | ||||||||||||||
d_model (`int`, *optional*, defaults to 1024): | ||||||||||||||
Dimensionality of the layers and the pooler layer. | ||||||||||||||
encoder_layers (`int`, *optional*, defaults to 12): | ||||||||||||||
Number of encoder layers. | ||||||||||||||
decoder_layers (`int`, *optional*, defaults to 12): | ||||||||||||||
Number of decoder layers. | ||||||||||||||
encoder_attention_heads (`int`, *optional*, defaults to 16): | ||||||||||||||
Number of attention heads for each attention layer in the Transformer encoder. | ||||||||||||||
decoder_attention_heads (`int`, *optional*, defaults to 16): | ||||||||||||||
Number of attention heads for each attention layer in the Transformer decoder. | ||||||||||||||
decoder_ffn_dim (`int`, *optional*, defaults to 4096): | ||||||||||||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | ||||||||||||||
encoder_ffn_dim (`int`, *optional*, defaults to 4096): | ||||||||||||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | ||||||||||||||
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | ||||||||||||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | ||||||||||||||
`"relu"`, `"silu"` and `"gelu_new"` are supported. | ||||||||||||||
dropout (`float`, *optional*, defaults to 0.1): | ||||||||||||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||||||||||||||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||||||||||||||
The dropout ratio for the attention probabilities. | ||||||||||||||
activation_dropout (`float`, *optional*, defaults to 0.0): | ||||||||||||||
The dropout ratio for activations inside the fully connected layer. | ||||||||||||||
classifier_dropout (`float`, *optional*, defaults to 0.0): | ||||||||||||||
The dropout ratio for classifier. | ||||||||||||||
max_position_embeddings (`int`, *optional*, defaults to 1024): | ||||||||||||||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||||||||||||||
just in case (e.g., 512 or 1024 or 2048). | ||||||||||||||
init_std (`float`, *optional*, defaults to 0.02): | ||||||||||||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||||||||||||||
encoder_layerdrop (`float`, *optional*, defaults to 0.0): | ||||||||||||||
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | ||||||||||||||
for more details. | ||||||||||||||
decoder_layerdrop (`float`, *optional*, defaults to 0.0): | ||||||||||||||
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | ||||||||||||||
for more details. | ||||||||||||||
scale_embedding (`bool`, *optional*, defaults to `False`): | ||||||||||||||
Scale embeddings by diving by sqrt(d_model). | ||||||||||||||
use_cache (`bool`, *optional*, defaults to `True`): | ||||||||||||||
Whether or not the model should return the last key/values attentions (not used by all models). | ||||||||||||||
num_labels (`int`, *optional*, defaults to 3): | ||||||||||||||
The number of labels to use in [`Florence2LanguageForSequenceClassification`]. | ||||||||||||||
forced_eos_token_id (`int`, *optional*, defaults to 2): | ||||||||||||||
The id of the token to force as the last generated token when `max_length` is reached. Usually set to | ||||||||||||||
`eos_token_id`. | ||||||||||||||
|
||||||||||||||
Example: | ||||||||||||||
|
||||||||||||||
```python | ||||||||||||||
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel | ||||||||||||||
|
||||||||||||||
>>> # Initializing a Florence2 Language style configuration | ||||||||||||||
>>> configuration = Florence2LanguageConfig() | ||||||||||||||
|
||||||||||||||
>>> # Initializing a model (with random weights) | ||||||||||||||
>>> model = Florence2LangaugeModel(configuration) | ||||||||||||||
|
||||||||||||||
>>> # Accessing the model configuration | ||||||||||||||
>>> configuration = model.config | ||||||||||||||
```""" | ||||||||||||||
|
||||||||||||||
model_type = "florence2_language" | ||||||||||||||
keys_to_ignore_at_inference = ["past_key_values"] | ||||||||||||||
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | ||||||||||||||
|
||||||||||||||
def __init__( | ||||||||||||||
self, | ||||||||||||||
vocab_size=51289, | ||||||||||||||
max_position_embeddings=1024, | ||||||||||||||
encoder_layers=12, | ||||||||||||||
encoder_ffn_dim=4096, | ||||||||||||||
encoder_attention_heads=16, | ||||||||||||||
decoder_layers=12, | ||||||||||||||
decoder_ffn_dim=4096, | ||||||||||||||
decoder_attention_heads=16, | ||||||||||||||
encoder_layerdrop=0.0, | ||||||||||||||
decoder_layerdrop=0.0, | ||||||||||||||
activation_function="gelu", | ||||||||||||||
d_model=1024, | ||||||||||||||
dropout=0.1, | ||||||||||||||
attention_dropout=0.0, | ||||||||||||||
activation_dropout=0.0, | ||||||||||||||
init_std=0.02, | ||||||||||||||
classifier_dropout=0.0, | ||||||||||||||
scale_embedding=False, | ||||||||||||||
use_cache=True, | ||||||||||||||
num_labels=3, | ||||||||||||||
pad_token_id=1, | ||||||||||||||
bos_token_id=0, | ||||||||||||||
eos_token_id=2, | ||||||||||||||
is_encoder_decoder=True, | ||||||||||||||
decoder_start_token_id=2, | ||||||||||||||
forced_eos_token_id=2, | ||||||||||||||
**kwargs, | ||||||||||||||
): | ||||||||||||||
self.vocab_size = vocab_size | ||||||||||||||
self.max_position_embeddings = max_position_embeddings | ||||||||||||||
self.d_model = d_model | ||||||||||||||
self.encoder_ffn_dim = encoder_ffn_dim | ||||||||||||||
self.encoder_layers = encoder_layers | ||||||||||||||
self.encoder_attention_heads = encoder_attention_heads | ||||||||||||||
self.decoder_ffn_dim = decoder_ffn_dim | ||||||||||||||
self.decoder_layers = decoder_layers | ||||||||||||||
self.decoder_attention_heads = decoder_attention_heads | ||||||||||||||
self.dropout = dropout | ||||||||||||||
self.attention_dropout = attention_dropout | ||||||||||||||
self.activation_dropout = activation_dropout | ||||||||||||||
self.activation_function = activation_function | ||||||||||||||
self.init_std = init_std | ||||||||||||||
self.encoder_layerdrop = encoder_layerdrop | ||||||||||||||
self.decoder_layerdrop = decoder_layerdrop | ||||||||||||||
self.classifier_dropout = classifier_dropout | ||||||||||||||
self.use_cache = use_cache | ||||||||||||||
self.num_hidden_layers = encoder_layers | ||||||||||||||
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | ||||||||||||||
|
||||||||||||||
super().__init__( | ||||||||||||||
num_labels=num_labels, | ||||||||||||||
pad_token_id=pad_token_id, | ||||||||||||||
bos_token_id=bos_token_id, | ||||||||||||||
eos_token_id=eos_token_id, | ||||||||||||||
is_encoder_decoder=is_encoder_decoder, | ||||||||||||||
decoder_start_token_id=decoder_start_token_id, | ||||||||||||||
forced_eos_token_id=forced_eos_token_id, | ||||||||||||||
**kwargs, | ||||||||||||||
) | ||||||||||||||
|
||||||||||||||
# ensure backward compatibility for BART CNN models | ||||||||||||||
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): | ||||||||||||||
self.forced_bos_token_id = self.bos_token_id | ||||||||||||||
warnings.warn( | ||||||||||||||
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " | ||||||||||||||
"The config can simply be saved and uploaded again to be fixed." | ||||||||||||||
) | ||||||||||||||
|
||||||||||||||
class Florence2Config(PretrainedConfig): | ||||||||||||||
r""" | ||||||||||||||
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an | ||||||||||||||
Florence-2 model according to the specified arguments, defining the model architecture. | ||||||||||||||
|
||||||||||||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||||||||||||||
documentation from [`PretrainedConfig`] for more information. | ||||||||||||||
|
||||||||||||||
Args: | ||||||||||||||
vision_config (`Florence2VisionConfig`, *optional*): | ||||||||||||||
Custom vision config or dict | ||||||||||||||
text_config (`Union[AutoConfig, dict]`, *optional*): | ||||||||||||||
The config object of the text backbone. | ||||||||||||||
ignore_index (`int`, *optional*, defaults to -100): | ||||||||||||||
The ignore index for the loss function. | ||||||||||||||
vocab_size (`int`, *optional*, defaults to 51289): | ||||||||||||||
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the | ||||||||||||||
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`] | ||||||||||||||
projection_dim (`int`, *optional*, defaults to 1024): | ||||||||||||||
Dimension of the multimodal projection space. | ||||||||||||||
|
||||||||||||||
Example: | ||||||||||||||
|
||||||||||||||
```python | ||||||||||||||
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig | ||||||||||||||
|
||||||||||||||
>>> # Initializing a clip-like vision config | ||||||||||||||
>>> vision_config = CLIPVisionConfig() | ||||||||||||||
|
||||||||||||||
>>> # Initializing a Bart config | ||||||||||||||
>>> text_config = BartConfig() | ||||||||||||||
|
||||||||||||||
>>> # Initializing a Florence-2 configuration | ||||||||||||||
>>> configuration = Florence2Config(vision_config, text_config) | ||||||||||||||
|
||||||||||||||
>>> # Initializing a model from the florence-2 configuration | ||||||||||||||
>>> model = Florence2ForConditionalGeneration(configuration) | ||||||||||||||
|
||||||||||||||
>>> # Accessing the model configuration | ||||||||||||||
>>> configuration = model.config | ||||||||||||||
```""" | ||||||||||||||
|
||||||||||||||
model_type = "florence2" | ||||||||||||||
is_composition = False | ||||||||||||||
|
||||||||||||||
def __init__( | ||||||||||||||
self, | ||||||||||||||
vision_config=None, | ||||||||||||||
text_config=None, | ||||||||||||||
ignore_index=-100, | ||||||||||||||
vocab_size=51289, | ||||||||||||||
projection_dim=1024, | ||||||||||||||
**kwargs, | ||||||||||||||
): | ||||||||||||||
self.ignore_index = ignore_index | ||||||||||||||
self.vocab_size = vocab_size | ||||||||||||||
self.projection_dim = projection_dim | ||||||||||||||
if vision_config is not None: | ||||||||||||||
vision_config = PretrainedConfig(**vision_config) | ||||||||||||||
self.vision_config = vision_config | ||||||||||||||
self.vocab_size = self.vocab_size | ||||||||||||||
|
||||||||||||||
self.text_config = text_config | ||||||||||||||
if text_config is not None: | ||||||||||||||
self.text_config = Florence2LanguageConfig(**text_config) | ||||||||||||||
|
||||||||||||||
|
||||||||||||||
super().__init__(**kwargs) |
45 changes: 45 additions & 0 deletions
45
colpali_engine/models/florence2/colflor/modeling_colflor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
from typing import ClassVar | ||
|
||
import torch | ||
from torch import nn | ||
|
||
from .configuration_florence2 import Florence2Config | ||
from .modeling_florence2 import Florence2VisionLanguageModel | ||
|
||
|
||
class ColFlor(Florence2VisionLanguageModel): | ||
""" | ||
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper. | ||
""" | ||
|
||
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related | ||
|
||
def __init__(self, config: Florence2Config): | ||
super().__init__(config=config) | ||
|
||
self.dim = 128 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is it too late to allow the user to change the output dimension? |
||
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim) | ||
|
||
self.padding_side = "right" | ||
self.post_init() | ||
|
||
def forward(self, *args, **kwargs) -> torch.Tensor: | ||
# Delete output_hidden_states from kwargs | ||
kwargs.pop("output_hidden_states", None) | ||
|
||
# Create Full Attention Mask that includes both the image and text | ||
full_attention_mask = kwargs['attention_mask'] | ||
# make sure pixel_values are in the same dtype as the model | ||
if 'pixel_values' in kwargs: | ||
full_attention_mask = kwargs['full_attention_mask'].type(self.dtype) | ||
del kwargs['full_attention_mask'] | ||
kwargs['pixel_values'] = kwargs['pixel_values'].type(self.dtype) | ||
|
||
outputs = super().forward(*args, **kwargs) | ||
|
||
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size) | ||
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim) | ||
# L2 normalization | ||
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) | ||
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim) | ||
return proj |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks this code is adapted
microsoft/Florence-2-large
from the Hf Hub. If yes, I would add the original link on top of the file. Moreover, I'm not a big fan of# ruff: noqa
so I think we could get rid of it.You might need to apply the ruff linter after this change!