Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Colflor #104

Open
wants to merge 26 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions colpali_engine/models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from .florence2 import ColFlor, ColFlorProcessor
from .idefics_2 import BiIdefics2, ColIdefics2, ColIdefics2Processor
from .paligemma import BiPali, BiPaliProcessor, BiPaliProj, ColPali, ColPaliProcessor
from .qwen2 import BiQwen2, BiQwen2Processor, ColQwen2, ColQwen2Processor
1 change: 1 addition & 0 deletions colpali_engine/models/florence2/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .colflor import ColFlor, ColFlorProcessor
2 changes: 2 additions & 0 deletions colpali_engine/models/florence2/colflor/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from .modeling_colflor import ColFlor
from .processing_colflor import ColFlorProcessor
339 changes: 339 additions & 0 deletions colpali_engine/models/florence2/colflor/configuration_florence2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
# ruff: noqa
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Comment on lines +1 to +14
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks this code is adapted microsoft/Florence-2-large from the Hf Hub. If yes, I would add the original link on top of the file. Moreover, I'm not a big fan of # ruff: noqa so I think we could get rid of it.

You might need to apply the ruff linter after this change!

Suggested change
# ruff: noqa
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code was copied and adapted from the "microsoft/Florence-2-large" model: https://huggingface.co/microsoft/Florence-2-large/blob/main/configuration_florence2.py
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings

""" Florence-2 configuration"""
Comment on lines +15 to +17
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
import warnings
""" Florence-2 configuration"""
"""Florence-2 configuration"""
import warnings



from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

class Florence2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
drop_path_rate (`float`, *optional*, defaults to 0.1):
The dropout rate of the drop path layer.
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
The patch size of the image.
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
The patch stride of the image.
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
The patch padding of the image.
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
Whether to apply layer normalization before the patch embedding layer.
enable_checkpoint (`bool`, *optional*, defaults to False):
Whether to enable checkpointing.
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
The dimension of the embedding layer.
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
The number of attention heads.
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
The number of groups.
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
The depth of the model.
window_size (`int`, *optional*, defaults to 12):
The window size of the model.
projection_dim (`int`, *optional*, defaults to 1024):
The dimension of the projection layer.
visual_temporal_embedding (`dict`, *optional*):
The configuration of the visual temporal embedding.
image_pos_embed (`dict`, *optional*):
The configuration of the image position embedding.
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
The source of the image feature.
Example:

```python
>>> from transformers import Florence2VisionConfig, Florence2VisionModel

>>> # Initializing a Florence2 Vision style configuration
>>> configuration = Florence2VisionConfig()

>>> # Initializing a model (with random weights)
>>> model = Florence2VisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "florence2_vision"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
drop_path_rate=0.1,
patch_size=[7, 3, 3, 3],
patch_stride=[4, 2, 2, 2],
patch_padding=[3, 1, 1, 1],
patch_prenorm=[False, True, True, True],
enable_checkpoint=False,
dim_embed=[256, 512, 1024, 2048],
num_heads=[8, 16, 32, 64],
num_groups=[8, 16, 32, 64],
depths=[1, 1, 9, 1],
window_size=12,
projection_dim=1024,
visual_temporal_embedding=None,
image_pos_embed=None,
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
**kwargs,
):
self.drop_path_rate = drop_path_rate
self.patch_size = patch_size
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.patch_prenorm = patch_prenorm
self.enable_checkpoint = enable_checkpoint
self.dim_embed = dim_embed
self.num_heads = num_heads
self.num_groups = num_groups
self.depths = depths
self.window_size = window_size
self.projection_dim = projection_dim
self.visual_temporal_embedding = visual_temporal_embedding
self.image_pos_embed = image_pos_embed
self.image_feature_source = image_feature_source

super().__init__(**kwargs)



class Florence2LanguageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BART
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 51289):
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Florence2LanguageModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels (`int`, *optional*, defaults to 3):
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.

Example:

```python
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel

>>> # Initializing a Florence2 Language style configuration
>>> configuration = Florence2LanguageConfig()

>>> # Initializing a model (with random weights)
>>> model = Florence2LangaugeModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "florence2_language"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

def __init__(
self,
vocab_size=51289,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
num_labels=3,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True

super().__init__(
num_labels=num_labels,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)

# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)

class Florence2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
Florence-2 model according to the specified arguments, defining the model architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
vision_config (`Florence2VisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
vocab_size (`int`, *optional*, defaults to 51289):
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
projection_dim (`int`, *optional*, defaults to 1024):
Dimension of the multimodal projection space.

Example:

```python
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig

>>> # Initializing a clip-like vision config
>>> vision_config = CLIPVisionConfig()

>>> # Initializing a Bart config
>>> text_config = BartConfig()

>>> # Initializing a Florence-2 configuration
>>> configuration = Florence2Config(vision_config, text_config)

>>> # Initializing a model from the florence-2 configuration
>>> model = Florence2ForConditionalGeneration(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "florence2"
is_composition = False

def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
vocab_size=51289,
projection_dim=1024,
**kwargs,
):
self.ignore_index = ignore_index
self.vocab_size = vocab_size
self.projection_dim = projection_dim
if vision_config is not None:
vision_config = PretrainedConfig(**vision_config)
self.vision_config = vision_config
self.vocab_size = self.vocab_size

self.text_config = text_config
if text_config is not None:
self.text_config = Florence2LanguageConfig(**text_config)


super().__init__(**kwargs)
45 changes: 45 additions & 0 deletions colpali_engine/models/florence2/colflor/modeling_colflor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
from typing import ClassVar

import torch
from torch import nn

from .configuration_florence2 import Florence2Config
from .modeling_florence2 import Florence2VisionLanguageModel


class ColFlor(Florence2VisionLanguageModel):
"""
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
"""

main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related

def __init__(self, config: Florence2Config):
super().__init__(config=config)

self.dim = 128
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is it too late to allow the user to change the output dimension?

self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)

self.padding_side = "right"
self.post_init()

def forward(self, *args, **kwargs) -> torch.Tensor:
# Delete output_hidden_states from kwargs
kwargs.pop("output_hidden_states", None)

# Create Full Attention Mask that includes both the image and text
full_attention_mask = kwargs['attention_mask']
# make sure pixel_values are in the same dtype as the model
if 'pixel_values' in kwargs:
full_attention_mask = kwargs['full_attention_mask'].type(self.dtype)
del kwargs['full_attention_mask']
kwargs['pixel_values'] = kwargs['pixel_values'].type(self.dtype)

outputs = super().forward(*args, **kwargs)

last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
# L2 normalization
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
return proj
Loading
Loading