Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[docs] use nn.module instead of tensor as model #3157

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 17 additions & 9 deletions docs/source/usage_guides/gradient_accumulation.md
Original file line number Diff line number Diff line change
Expand Up @@ -194,31 +194,39 @@ dataset = TensorDataset(x, y)
dataloader = DataLoader(dataset, batch_size=batch_size)

# define model, optimizer and loss function
model = torch.zeros((1, 1), requires_grad=True)
class SimpleLinearModel(torch.nn.Module):
def __init__(self):
super(SimpleLinearModel, self).__init__()
self.weight = torch.nn.Parameter(torch.zeros((1, 1)))

def forward(self, inputs):
return inputs @ self.weight

model = SimpleLinearModel()
model_clone = copy.deepcopy(model)
criterion = torch.nn.MSELoss()
model_optimizer = torch.optim.SGD([model], lr=0.02)
model_optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
model, model_optimizer, dataloader = accelerator.prepare(model, model_optimizer, dataloader)
model_clone_optimizer = torch.optim.SGD([model_clone], lr=0.02)
print(f"initial model weight is {model.mean().item():.5f}")
print(f"initial model weight is {model_clone.mean().item():.5f}")
model_clone_optimizer = torch.optim.SGD(model_clone.parameters(), lr=0.02)
print(f"initial model weight is {model.weight.mean().item():.5f}")
print(f"initial model weight is {model_clone.weight.mean().item():.5f}")
for i, (inputs, labels) in enumerate(dataloader):
with accelerator.accumulate(model):
inputs = inputs.view(-1, 1)
print(i, inputs.flatten())
labels = labels.view(-1, 1)
outputs = inputs @ model
outputs = model(inputs)
loss = criterion(outputs, labels)
accelerator.backward(loss)
model_optimizer.step()
model_optimizer.zero_grad()
loss = criterion(x.view(-1, 1) @ model_clone, y.view(-1, 1))
loss = criterion(x.view(-1, 1) @ model_clone.weight, y.view(-1, 1))
model_clone_optimizer.zero_grad()
loss.backward()
model_clone_optimizer.step()
print(f"w/ accumulation, the final model weight is {model.mean().item():.5f}")
print(f"w/o accumulation, the final model weight is {model_clone.mean().item():.5f}")
print(f"w/ accumulation, the final model weight is {model.weight.mean().item():.5f}")
print(f"w/o accumulation, the final model weight is {model_clone.weight.mean().item():.5f}")
```
```
initial model weight is 0.00000
Expand Down