Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
HantingChen authored May 23, 2023
1 parent 3bec241 commit 1daa1dd
Showing 1 changed file with 15 additions and 7 deletions.
22 changes: 15 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# VanillaNet: the Power of Minimalism in Deep Learning
<p align="left">
<a href="https://arxiv.org/abs/2305.xxxxx" alt="arXiv">
<img src="https://img.shields.io/badge/arXiv-2205.xxxxx-b31b1b.svg?style=flat" /></a>
<a href="https://arxiv.org/abs/2305.12972" alt="arXiv">
<img src="https://img.shields.io/badge/arXiv-2305.12972-b31b1b.svg?style=flat" /></a>
</p>


Official PyTorch implementation of **VanillaNet**, from the following paper:\
[VanillaNet: the Power of Minimalism in Deep Learning ](https://arxiv.org/abs/)\
[VanillaNet: the Power of Minimalism in Deep Learning ](https://arxiv.org/abs/2305.12972)\
Hanting chen, [Yunhe Wang](https://www.wangyunhe.site/), Jianyuan Guo and Dacheng Tao

<img src="pic/structure.PNG" width="800px"/>
Expand All @@ -25,11 +25,11 @@ VanillaNet, in its robust simplicity, offers comparable precision to prevalent c

| Framework | Backbone | FLOPs(G) | #params(M) | FPS | AP<sup>b</sup> | AP<sup>m</sup> |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|
| RetinaNet | Swin-T| 245 | 38.5 | 27.5 | 41.5 | - |
| | VanillaNet-11 | 386 | 67.0 | 30.8 | 41.8 | - |
| RetinaNet | Swin-T | 245 | 38.5 | 27.5 | 41.5 | - |
| | VanillaNet-13 | 386 | 67.0 | 30.4 | 41.8 | - |
| Mask RCNN | ConvNeXtV2-N | 221 | 35.2 | 31.7 | 42.7 | 38.9 |
| | [Swin-T](https://github.com/open-mmlab/mmdetection/tree/main/configs/swin) | 267 | 47.8 | 28.2 | 42.7 | 39.3 |
| | VanillaNet-11 | 404 | 107.5 | 33.6 | 42.9 | 39.6 |
| | VanillaNet-13 | 404 | 107.5 | 33.2 | 42.9 | 39.6 |

VanillaNet achieves a higher Frames Per Second (FPS) in **detection** and **segmentation** tasks.

Expand Down Expand Up @@ -211,4 +211,12 @@ This repository is built using the [timm](https://github.com/rwightman/pytorch-i
This project is released under the MIT license. Please see the [LICENSE](License) file for more information.

### Citation
If our work is useful for your research, please consider citation.
If our work is useful for your research, please consider citing:
```
@article{chen2023vanillanet,
title={VanillaNet: the Power of Minimalism in Deep Learning},
author={Chen, Hanting and Wang, Yunhe and Guo, Jianyuan and Tao, Dacheng},
journal={arXiv preprint arXiv:2305.12972},
year={2023}
}
```

0 comments on commit 1daa1dd

Please sign in to comment.