Skip to content

hiennguyen9874/person-attribute-recognition

Repository files navigation

Person Attribute Recognition

Install

  • pip3 install -r requirements.txt

Dataset

  • Manual download from github.com/dangweili/pedestrian-attribute-recognition-pytorch and extract dataset.
    • PETA
      data_dir/
      |--peta/
      |  |--images/
      |  |  |--00001.png
      |  |  |--00002.png
      |  |  |--...
      |  |--PETA.mat
      
    • PA-100K
      data_dir/
      |--pa_100k/
      |  |--images/
      |  |  |--0000001.png
      |  |  |--0000002.png
      |  |  |--...
      |  |--annotation.mat
      
      data_dir in config file.

Run

  • python3 train.py --config <path/to/config_file.yml>

Config

Result

Peta dataset

backbone bn after linear Head Loss mA Accuracy Precision Recall F1-Score
resnet50 BNHead CEL_Sigmoid 84.79 80.07 88.28 86.24 86.98
resnet50 BNHead BCEWithLogitsLoss 79.47 76.33 87.22 82.38 84.33
resnet50_ibn_a_nl BNHead CEL_Sigmoid 83.49 79.60 88.89 85.14 86.65
osnet ReductionHead CEL_Sigmoid 77.67 73.44 84.17 80.60 81.97
osnet ReductionHead BCEWithLogitsLoss 71.00 67.49 85.60 72.94 77.94
osnet BNHead CEL_Sigmoid 77.89 72.57 83.68 79.96 81.32
resnet50 BNHead CEL_Sigmoid 82.67 78.61 88.53 84.17 85.91
resnet50_ibn_a_nl BNHead CEL_Sigmoid 82.24 78.57 88.48 84.20 85.91
osnet ReductionHead CEL_Sigmoid 77.93 73.00 83.82 80.65 81.81
osnet BNHead CEL_Sigmoid 77.72 73.04 84.65 79.82 81.68

PA-100K

backbone bn after linear Head Loss mA Accuracy Precision Recall F1-Score
resnet50 BNHead CEL_Sigmoid 79.50 78.89 88.17 86.28 86.80

Deploy model with torchserve

Acknowledgements