-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
executable file
·196 lines (162 loc) · 6.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
import datetime, sys, os, io
import tslite, json, zlib, lzma
import dateutil.parser
def result(text, cond):
if cond == True:
print(" %s ... %sOK%s" % (text, bcolors.OKGREEN, bcolors.ENDC))
else:
print(" %s ... %sFAIL!%s" % (text, bcolors.FAIL, bcolors.ENDC))
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
#Begin tslite tests
print("Testing tslite")
#Binary IO
#----------------------------------------------------------------
t = tslite.timeseries().loadBinaryV1("test/testv1.dat")
result("Load v1 Binary Data", (len(t.data) > 0))
t.saveBinary("test/test.dat")
result("Save Binary Data", t.status == "OK")
probe = tslite.timeseries().loadBinary("test/test.dat")
result("Load Binary Data", t == probe)
print(" zlib compressing timeseries of length %d..." % (len(t)))
b = t.toBinary()
z = zlib.compress(memoryview(b), 9)
print(" %d bytes, %d bytes compressed" % (len(b), len(z)))
b = zlib.decompress(z)
probe = tslite.timeseries().fromBinary(b)
print(" decompressed %d lines" % (len(probe)))
result("zlib Binary compression in memory", t == probe)
#LZMA compression
#https://docs.python.org/3/library/lzma.html
print(" lzma compressing timeseries of length %d..." % (len(t)))
b = t.toBinary()
z = lzma.compress(b, filters = [{"id": lzma.FILTER_LZMA2, "preset": 9}])
print(" %d bytes, %d bytes compressed" % (len(b), len(z)))
b = lzma.decompress(z)
probe = tslite.timeseries().fromBinary(b)
print(" decompressed %d lines" % (len(probe)))
result("lzma Binary compression in memory", t == probe)
with open("test/test.xz", "wb") as f:
f.write(z)
with lzma.open("test/test.xz") as f:
probe = tslite.timeseries().fromBinary(f.read())
result("lzma Binary compression on disk", t == probe)
#SQLITE3 IO
#----------------------------------------------------------------
conn = tslite.timeseries().SQLITE3connect("test/test.db")
result("SQLITE3 connection", conn != None)
t.saveSQLITE3 (conn,"saveSQLITE3", replace_table = True)
result("Save to SQLITE3 database", t.status == "OK")
#save a reasonable set of test data
# 6hr and daily data
#t2 = t.snap(t.TD("6h"),t.TD("3h"),starttime=datetime.datetime(year=2014, month=1, day=5))
#t2.saveSQLITE3 (conn,"test6hr", replace_table = True)
#t2 = t.snap(t.TD("1d"),t.TD("12h"),starttime=datetime.datetime(year=2014, month=1, day=5))
#t2.saveSQLITE3 (conn,"testdaily", replace_table = True)
probe = tslite.timeseries().loadSQLITE3(conn, "saveSQLITE3")
result("Load from SQLITE3 database", t == probe)
#Snap
#----------------------------------------------------------------
t2 = t.snap("1d", "6h")
probe = tslite.timeseries().loadSQLITE3 (conn, "snap")
result("snap", probe == t2)
#Hardsnap
#----------------------------------------------------------------
t2 = t.snap(t.TD("1d"),t.TD("6h"),starttime=datetime.datetime(year=2014, month=1, day=5))
#t2.saveSQLITE3 (conn,"hardsnap", replace_table = True)
probe = tslite.timeseries().loadSQLITE3(conn, "hardsnap")
result("hardsnap", probe == t2)
#Variance
#----------------------------------------------------------------
result(
"variance",
probe.variance() == [datetime.datetime(2014, 2, 6, 0, 0), 1574.489562817637, 0])
#Standard deviation
#----------------------------------------------------------------
result(
"standard deviation",
probe.stddev() == [datetime.datetime(2014, 2, 6, 0, 0), 39.67983824081995, 0])
#Linear Regression Coefficients
#----------------------------------------------------------------
result(
"linear regression coefficients",
probe.linreg() == (-3.2215856195371914e-05, 45607.98076509822, -0.668228372287951))
#trendline
#----------------------------------------------------------------
probe = tslite.timeseries().loadSQLITE3(conn, "trendline")
t = tslite.timeseries().loadSQLITE3 (conn, "test6hr")
result("linear regression trendline", t.trendline() == probe)
#cull
#----------------------------------------------------------------
t = tslite.timeseries().loadSQLITE3 (conn, "testdaily")
t2 = t.cull(lambda x, y: x > y, 800.0)
probe = tslite.timeseries().loadTSV("test/cull.tsv")
result("cull below a constant (in this case 800.0)", t2.__eq__(probe, precision=2))
t2 = t.cull(lambda x, y: x > y, 800)
result("cull below a constant Integer (800)", t2.__eq__(probe, precision=2))
#centerMovingAverage and cull
#----------------------------------------------------------------
t = tslite.timeseries().loadSQLITE3 (conn, "testdaily")
r = t.centerMovingAverage(t.TD("5d"))
t2 = t.cull(lambda x, y: x > y, r) # cull values in "t" that are less than input "r"
#t2.saveTSV("test/TScull.tsv")
probe = tslite.timeseries().loadTSV("test/TScull.tsv")
result("Center moving average and TS cull", t2.__eq__(probe, precision=2))
t2 = t.cullBelow(r)
result("TS cullBelow", t2.__eq__(probe, precision=2))
#print (t.status,"test",t2,"probe",probe)
#cut
#----------------------------------------------------------------
t = tslite.timeseries().loadSQLITE3 (conn, "test6hr")
t1 = tslite.timeseries().loadSQLITE3 (conn, "testdaily")
t2 = t.cut(t1)
#print("t", t, "t2", t1, "result", t2)
#result("cut", t3.__eq__(probe, precision=2))
#Moving Standard Deviation BROKEN!
#----------------------------------------------------------------
#t = tslite.timeseries().loadSQLITE3 (conn, "test6hr")
#t1 = t.movingstddev("1d")
#probe = tslite.timeseries().loadTSV("test/movingSTDDEV.tsv")
#result("Moving Standard Deviation", t1.__eq__(probe, precision=2))
#toJSON
#----------------------------------------------------------------
t = tslite.timeseries().fromJSON(open("test/test.json", "r").read())
t1 = tslite.timeseries().fromJSON(t.toJSON())
result("fromJSON and toJSON", t == t1)
#print (t.status,"test",t.toJSON(),"probe",t1)
#Round
#----------------------------------------------------------------
t = tslite.timeseries().fromJSON(open("test/test.json", "r").read())
probe = tslite.timeseries().loadTSV("test/round.tsv")
result("round", t.round(2) == probe)
#Truncate
#----------------------------------------------------------------
t = tslite.timeseries().fromJSON(open("test/test.json", "r").read())
probe = tslite.timeseries().loadTSV("test/truncate.tsv")
result("truncate", t.truncate(2) == probe)
#First Difference
#----------------------------------------------------------------
t = tslite.timeseries().loadSQLITE3(conn, "test").firstdifference()
#t.saveSQLITE3(conn,"firstdifference", replace_table = True)
probe = tslite.timeseries().loadSQLITE3(conn, "firstdifference")
result("first difference (simpledelta)", t == probe)
#To Plot
#----------------------------------------------------------------
x, y = t.toPlot()
t = tslite.timeseries()
for i in range(len(x)):
t.insert(x[i], y[i])
result("toPlot", t == probe)
#runningTotal
#----------------------------------------------------------------
t1 = tslite.timeseries().loadTSV("test/inflow.tsv")
probe = tslite.timeseries().loadTSV("test/runningTotal.tsv")
result("runningTotal", t1.runningTotal() == probe)