Kindly execute FaceID for realtime inferencing.
FaceDetector.OPENCV_DL_FACEDETECTOR
(default): OpenCV with prebuilt caffe face detection model- Configuration:
imageWidth:300
imageHeight:300
detectionThreshold:0.8
- Resources:
\OpenCVDeepLearningFaceDetector \res10_300x300_ssd_iter_140000.caffemodel \deploy.prototxt
- Configuration:
FaceDetector.OPENIMAJ_FKE_FACEDETECTOR
: OpenIMAJ's FKEFaceDetector- Configuration
detectionThreshold:1.0
- Configuration
FaceIdentifier.FEATURE_DISTANCE_VGG16_PREBUILT
: Identification by highest cosine similarity between webcam image and target embeddings (prebuilt VGG16 model with VGGFACE dataset, layerfc8
as features).- Configuration
FaceFeatureProvider:VGG16FeatureProvider
dictDir: resources \vgg16_faces_224
detection target faces.numPredicts:1
number of predictionsdetectionThreshold:0.78
numSamples:3
average of top 3 per class
- Resources:
\vgg16_faces_224 \person A \face1.jpg \face2.jpg \person B \face1.jpg \face2.jpg
- Configuration
FaceIdentifier.CUSTOM_VGG16
: Identification by inference self trained model (may refer training steps)- Configuration
numPrediction:3
- Configuration
FaceIdentifier.FEATURE_DISTANCE_FACENET_PREBUILT
(not stable): Identification by highest cosine similarity between webcam image and target embeddings (prebuilt InceptionResNetv1 model deployed on SKIL).FaceIdentifier.ZHZD
: Identification by inference model trained by [email protected], mainly for testing purposes.
- Using FaceIdentifier.FEATURE_DISTANCE: kindly invoke VGG16FaceDatasetPreperation.java to extract detection targets face images and load into
\vgg16_faces_224
resource directory.