Research Playground built on top of OpenAI's Atari Gym, prepared for implementing various Reinforcement Learning algorithms.
It can emulate any of the following games:
['Asterix', 'Asteroids', 'MsPacman', 'Kaboom', 'BankHeist', 'Kangaroo', 'Skiing', 'FishingDerby', 'Krull', 'Berzerk', 'Tutankham', 'Zaxxon', 'Venture', 'Riverraid', 'Centipede', 'Adventure', 'BeamRider', 'CrazyClimber', 'TimePilot', 'Carnival', 'Tennis', 'Seaquest', 'Bowling', 'SpaceInvaders', 'Freeway', 'YarsRevenge', 'RoadRunner', 'JourneyEscape', 'WizardOfWor', 'Gopher', 'Breakout', 'StarGunner', 'Atlantis', 'DoubleDunk', 'Hero', 'BattleZone', 'Solaris', 'UpNDown', 'Frostbite', 'KungFuMaster', 'Pooyan', 'Pitfall', 'MontezumaRevenge', 'PrivateEye', 'AirRaid', 'Amidar', 'Robotank', 'DemonAttack', 'Defender', 'NameThisGame', 'Phoenix', 'Gravitar', 'ElevatorAction', 'Pong', 'VideoPinball', 'IceHockey', 'Boxing', 'Assault', 'Alien', 'Qbert', 'Enduro', 'ChopperCommand', 'Jamesbond']
Check out corresponding Medium article: Atari - Reinforcement Learning in depth 🤖 (Part 1: DDQN)
The ultimate goal of this project is to implement and compare various RL approaches with atari games as a common denominator.
- Clone the repo.
- Go to the project's root folder.
- Install required packages
pip install -r requirements.txt
. - Launch atari. I recommend starting with help command to see all available modes
python atari.py --help
.
* GAMMA = 0.99
* MEMORY_SIZE = 900000
* BATCH_SIZE = 32
* TRAINING_FREQUENCY = 4
* TARGET_NETWORK_UPDATE_FREQUENCY = 40000
* MODEL_PERSISTENCE_UPDATE_FREQUENCY = 10000
* REPLAY_START_SIZE = 50000
* EXPLORATION_MAX = 1.0
* EXPLORATION_MIN = 0.1
* EXPLORATION_TEST = 0.02
* EXPLORATION_STEPS = 850000
Deep Convolutional Neural Network by DeepMind
* Conv2D (None, 32, 20, 20)
* Conv2D (None, 64, 9, 9)
* Conv2D (None, 64, 7, 7)
* Flatten (None, 3136)
* Dense (None, 512)
* Dense (None, 4)
Trainable params: 1,686,180
After 5M of steps (~40h on Tesla K80 GPU or ~90h on 2.9 GHz Intel i7 Quad-Core CPU):
Training:
Normalized score - each reward clipped to (-1, 1)
Testing:
Human average: ~372
DDQN average: ~479 (128%)
Training:
Normalized score - each reward clipped to (-1, 1)
Testing:
Human average: ~28
DDQN average: ~62 (221%)
Training:
Normalized score - each reward clipped to (-1, 1)
Testing:
Human average: ~29,000
GE average: 31,000 (106%)
Greg (Grzegorz) Surma