Skip to content

gozsoy/3d-human-body-reconstruction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

Project 3 - Dicemen

NOTE: Only model files are available because of copyright on original codebase.

Installation

  1. Create the environment
    conda env create -f environment.yml
  2. Activate the environment
    conda activate mp_project3
  3. Run the following commands to install the remaining dependencies about pytorch-geometric in to the activated environment
    pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html
    pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html
    pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html
    pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html
    pip install torch-geometric
    Note: If pip commands give error, it is necessary to follow these steps below:
    wget https://pytorch-geometric.com/whl/torch-1.7.0+cu101/torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl
    wget https://pytorch-geometric.com/whl/torch-1.7.0+cu101/torch_scatter-2.0.6-cp38-cp38-linux_x86_64.whl
    wget https://pytorch-geometric.com/whl/torch-1.7.0+cu101/torch_sparse-0.6.9-cp38-cp38-linux_x86_64.whl
    wget https://pytorch-geometric.com/whl/torch-1.7.0+cu101/torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl
    pip install torch-geometric
    pip install wheel
    pip install torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl
    pip install torch_scatter-2.0.6-cp38-cp38-linux_x86_64.whl
    pip install torch_sparse-0.6.9-cp38-cp38-linux_x86_64.whl
    pip install torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl
  4. Submit the training task to GPU with the following command (indicated time necessary to reproduce results)
    cd codebase/
    bsub -n 4 -W 24:00 -o sample_test -R "rusage[mem=4096, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py ../configs/convgatadv.yaml
  5. Submit the prediction task to GPU with the following command
    bsub -n 4 -W 2:00 -o sample_test -R "rusage[mem=4096, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python test.py ../configs/convgatadv.yaml --gen_model_file gen_model_200000.pt --disc_model_file disc_model_200000.pt

Results will be saved under a directory with the same name as the model (NOT in the top directory as the vanilla code did).

About

Course project for Machine Perception course, Spring 2021

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages