Skip to content

Latest commit

 

History

History
436 lines (336 loc) · 18.3 KB

README.md

File metadata and controls

436 lines (336 loc) · 18.3 KB

DataFusion Benchmarks

This crate contains benchmarks based on popular public data sets and open source benchmark suites, to help with performance and scalability testing of DataFusion.

Other engines

The benchmarks measure changes to DataFusion itself, rather than its performance against other engines. For competitive benchmarking, DataFusion is included in the benchmark setups for several popular benchmarks that compare performance with other engines. For example:

Running the benchmarks

bench.sh

The easiest way to run benchmarks is the bench.sh script. Usage instructions can be found with:

# show usage
./bench.sh

Generating data

You can create / download the data for these benchmarks using the bench.sh script:

Create / download all datasets

./bench.sh data

Create / download a specific dataset (TPCH)

./bench.sh data tpch

Data is placed in the data subdirectory.

Select join algorithm

The benchmark runs with prefer_hash_join == true by default, which enforces HASH join algorithm. To run TPCH benchmarks with join other than HASH:

PREFER_HASH_JOIN=false ./bench.sh run tpch

Comparing performance of main and a branch

git checkout main

# Create the data
./benchmarks/bench.sh data

# Gather baseline data for tpch benchmark
./benchmarks/bench.sh run tpch

# Switch to the branch the branch name is mybranch and gather data
git checkout mybranch
./benchmarks/bench.sh run tpch

# Compare results in the two branches:
./bench.sh compare main mybranch

This produces results like:

Comparing main and mybranch
--------------------
Benchmark tpch.json
--------------------
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Query        ┃         main ┃     mybranch ┃        Change ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ QQuery 1     │    2520.52ms │    2795.09ms │  1.11x slower │
│ QQuery 2     │     222.37ms │     216.01ms │     no change │
│ QQuery 3     │     248.41ms │     239.07ms │     no change │
│ QQuery 4     │     144.01ms │     129.28ms │ +1.11x faster │
│ QQuery 5     │     339.54ms │     327.53ms │     no change │
│ QQuery 6     │     147.59ms │     138.73ms │ +1.06x faster │
│ QQuery 7     │     605.72ms │     631.23ms │     no change │
│ QQuery 8     │     326.35ms │     372.12ms │  1.14x slower │
│ QQuery 9     │     579.02ms │     634.73ms │  1.10x slower │
│ QQuery 10    │     403.38ms │     420.39ms │     no change │
│ QQuery 11    │     201.94ms │     212.12ms │  1.05x slower │
│ QQuery 12    │     235.94ms │     254.58ms │  1.08x slower │
│ QQuery 13    │     738.40ms │     789.67ms │  1.07x slower │
│ QQuery 14    │     198.73ms │     206.96ms │     no change │
│ QQuery 15    │     183.32ms │     179.53ms │     no change │
│ QQuery 16    │     168.57ms │     186.43ms │  1.11x slower │
│ QQuery 17    │    2032.57ms │    2108.12ms │     no change │
│ QQuery 18    │    1912.80ms │    2134.82ms │  1.12x slower │
│ QQuery 19    │     391.64ms │     368.53ms │ +1.06x faster │
│ QQuery 20    │     648.22ms │     691.41ms │  1.07x slower │
│ QQuery 21    │     866.25ms │    1020.37ms │  1.18x slower │
│ QQuery 22    │     115.94ms │     117.27ms │     no change │
└──────────────┴──────────────┴──────────────┴───────────────┘
--------------------
Benchmark tpch_mem.json
--------------------
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Query        ┃         main ┃     mybranch ┃        Change ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ QQuery 1     │    2182.44ms │    2390.39ms │  1.10x slower │
│ QQuery 2     │     181.16ms │     153.94ms │ +1.18x faster │
│ QQuery 3     │      98.89ms │      95.51ms │     no change │
│ QQuery 4     │      61.43ms │      66.15ms │  1.08x slower │
│ QQuery 5     │     260.20ms │     283.65ms │  1.09x slower │
│ QQuery 6     │      24.24ms │      23.39ms │     no change │
│ QQuery 7     │     545.87ms │     653.34ms │  1.20x slower │
│ QQuery 8     │     147.48ms │     136.00ms │ +1.08x faster │
│ QQuery 9     │     371.53ms │     363.61ms │     no change │
│ QQuery 10    │     197.91ms │     190.37ms │     no change │
│ QQuery 11    │     197.91ms │     183.70ms │ +1.08x faster │
│ QQuery 12    │     100.32ms │     103.08ms │     no change │
│ QQuery 13    │     428.02ms │     440.26ms │     no change │
│ QQuery 14    │      38.50ms │      27.11ms │ +1.42x faster │
│ QQuery 15    │     101.15ms │      63.25ms │ +1.60x faster │
│ QQuery 16    │     171.15ms │     142.44ms │ +1.20x faster │
│ QQuery 17    │    1885.05ms │    1953.58ms │     no change │
│ QQuery 18    │    1549.92ms │    1914.06ms │  1.23x slower │
│ QQuery 19    │     106.53ms │     104.28ms │     no change │
│ QQuery 20    │     532.11ms │     610.62ms │  1.15x slower │
│ QQuery 21    │     723.39ms │     823.34ms │  1.14x slower │
│ QQuery 22    │      91.84ms │      89.89ms │     no change │
└──────────────┴──────────────┴──────────────┴───────────────┘

Note that you can also execute an automatic comparison of the changes in a given PR against the base just by including the trigger /benchmark in any comment.

Running Benchmarks Manually

Assuming data in the data directory, the tpch benchmark can be run with a command like this

cargo run --release --bin dfbench -- tpch --iterations 3 --path ./data --format tbl --query 1 --batch-size 4096

See the help for more details

Different features

You can enable mimalloc or snmalloc (to use either the mimalloc or snmalloc allocator) as features by passing them in as --features. For example

cargo run --release --features "mimalloc" --bin tpch -- benchmark datafusion --iterations 3 --path ./data --format tbl --query 1 --batch-size 4096

The benchmark program also supports CSV and Parquet input file formats and a utility is provided to convert from tbl (generated by the dbgen utility) to CSV and Parquet.

cargo run --release --bin tpch -- convert --input ./data --output /mnt/tpch-parquet --format parquet

Or if you want to verify and run all the queries in the benchmark, you can just run cargo test.

Comparing results between runs

Any dfbench execution with -o <dir> argument will produce a summary JSON in the specified directory. This file contains a serialized form of all the runs that happened and runtime metadata (number of cores, DataFusion version, etc.).

$ git checkout main
# generate an output script in /tmp/output_main
$ mkdir -p /tmp/output_main
$ cargo run --release --bin tpch -- benchmark datafusion --iterations 5 --path ./data --format parquet -o /tmp/output_main
# generate an output script in /tmp/output_branch
$ mkdir -p /tmp/output_branch
$ git checkout my_branch
$ cargo run --release --bin tpch -- benchmark datafusion --iterations 5 --path ./data --format parquet -o /tmp/output_branch
# compare the results:
./compare.py /tmp/output_main/tpch-summary--1679330119.json  /tmp/output_branch/tpch-summary--1679328405.json

This will produce output like

┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Query        ┃ /home/alamb… ┃ /home/alamb… ┃        Change ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ Q1           │   16252.56ms │   16031.82ms │     no change │
│ Q2           │    3994.56ms │    4353.75ms │  1.09x slower │
│ Q3           │    5572.06ms │    5620.27ms │     no change │
│ Q4           │    2144.14ms │    2194.67ms │     no change │
│ Q5           │    7796.93ms │    7646.74ms │     no change │
│ Q6           │    4382.32ms │    4327.16ms │     no change │
│ Q7           │   18702.50ms │   19922.74ms │  1.07x slower │
│ Q8           │    7383.74ms │    7616.21ms │     no change │
│ Q9           │   13855.17ms │   14408.42ms │     no change │
│ Q10          │    7446.05ms │    8030.00ms │  1.08x slower │
│ Q11          │    3414.81ms │    3850.34ms │  1.13x slower │
│ Q12          │    3027.16ms │    3085.89ms │     no change │
│ Q13          │   18859.06ms │   18627.02ms │     no change │
│ Q14          │    4157.91ms │    4140.22ms │     no change │
│ Q15          │    5293.05ms │    5369.17ms │     no change │
│ Q16          │    6512.42ms │    3011.58ms │ +2.16x faster │
│ Q17          │   86253.33ms │   76036.06ms │ +1.13x faster │
│ Q18          │   45101.99ms │   49717.76ms │  1.10x slower │
│ Q19          │    7323.15ms │    7409.85ms │     no change │
│ Q20          │   19902.39ms │   20965.94ms │  1.05x slower │
│ Q21          │   22040.06ms │   23184.84ms │  1.05x slower │
│ Q22          │    2011.87ms │    2143.62ms │  1.07x slower │
└──────────────┴──────────────┴──────────────┴───────────────┘

Benchmark Runner

The dfbench program contains subcommands to run the various benchmarks. When benchmarking, it should always be built in release mode using --release.

Full help for each benchmark can be found in the relevant sub command. For example to get help for tpch, run

cargo run --release --bin dfbench  --help
...
datafusion-benchmarks 27.0.0
benchmark command

USAGE:
    dfbench <SUBCOMMAND>

SUBCOMMANDS:
    clickbench        Run the clickbench benchmark
    help              Prints this message or the help of the given subcommand(s)
    parquet-filter    Test performance of parquet filter pushdown
    sort              Test performance of parquet filter pushdown
    tpch              Run the tpch benchmark.
    tpch-convert      Convert tpch .slt files to .parquet or .csv files

Benchmarks

The output of dfbench help includes a description of each benchmark, which is reproduced here for convenience

ClickBench

The ClickBench1 benchmarks are widely cited in the industry and focus on grouping / aggregation / filtering. This runner uses the scripts and queries from 2.

Parquet Filter

Test performance of parquet filter pushdown

The queries are executed on a synthetic dataset generated during the benchmark execution and designed to simulate web server access logs.

Example

dfbench parquet-filter --path ./data --scale-factor 1.0

generates the synthetic dataset at ./data/logs.parquet. The size of the dataset can be controlled through the size_factor (with the default value of 1.0 generating a ~1GB parquet file).

For each filter we will run the query using different ParquetScanOption settings.

Example output:

Running benchmarks with the following options: Opt { debug: false, iterations: 3, partitions: 2, path: "./data",
batch_size: 8192, scale_factor: 1.0 }
Generated test dataset with 10699521 rows
Executing with filter 'request_method = Utf8("GET")'
Using scan options ParquetScanOptions { pushdown_filters: false, reorder_predicates: false, enable_page_index: false }
Iteration 0 returned 10699521 rows in 1303 ms
Iteration 1 returned 10699521 rows in 1288 ms
Iteration 2 returned 10699521 rows in 1266 ms
Using scan options ParquetScanOptions { pushdown_filters: true, reorder_predicates: true, enable_page_index: true }
Iteration 0 returned 1781686 rows in 1970 ms
Iteration 1 returned 1781686 rows in 2002 ms
Iteration 2 returned 1781686 rows in 1988 ms
Using scan options ParquetScanOptions { pushdown_filters: true, reorder_predicates: false, enable_page_index: true }
Iteration 0 returned 1781686 rows in 1940 ms
Iteration 1 returned 1781686 rows in 1986 ms
Iteration 2 returned 1781686 rows in 1947 ms
...

Sort

Test performance of sorting large datasets

This test sorts a a synthetic dataset generated during the benchmark execution, designed to simulate sorting web server access logs. Such sorting is often done during data transformation steps.

The tests sort the entire dataset using several different sort orders.

Sort TPCH

Test performance of end-to-end sort SQL queries. (While the Sort benchmark focuses on a single sort executor, this benchmark tests how sorting is executed across multiple CPU cores by benchmarking sorting the whole relational table.)

Sort integration benchmark runs whole table sort queries on TPCH lineitem table, with different characteristics. For example, different number of sort keys, different sort key cardinality, different number of payload columns, etc.

See sort_tpch.rs for more details.

Sort TPCH Benchmark Example Runs

  1. Run all queries with default setting:
 cargo run --release --bin dfbench -- sort-tpch -p '....../datafusion/benchmarks/data/tpch_sf1' -o '/tmp/sort_tpch.json'
  1. Run a specific query:
 cargo run --release --bin dfbench -- sort-tpch -p '....../datafusion/benchmarks/data/tpch_sf1' -o '/tmp/sort_tpch.json' --query 2
  1. Run all queries with bench.sh script:
./bench.sh run sort_tpch

IMDB

Run Join Order Benchmark (JOB) on IMDB dataset.

The Internet Movie Database (IMDB) dataset contains real-world movie data. Unlike synthetic datasets like TPCH, which assume uniform data distribution and uncorrelated columns, the IMDB dataset includes skewed data and correlated columns (which are common for real dataset), making it more suitable for testing query optimizers, particularly for cardinality estimation.

This benchmark is derived from Join Order Benchmark.

See paper How Good Are Query Optimizers, Really for more details.

TPCH

Run the tpch benchmark.

This benchmarks is derived from the TPC-H version 2.17.1. The data and answers are generated using tpch-gen from 2.

External Aggregation

Run the benchmark for aggregations with limited memory.

When the memory limit is exceeded, the aggregation intermediate results will be spilled to disk, and finally read back with sort-merge.

External aggregation benchmarks run several aggregation queries with different memory limits, on TPCH lineitem table. Queries can be found in external_aggr.rs.

This benchmark is inspired by DuckDB's external aggregation paper, specifically Section VI.

External Aggregation Example Runs

  1. Run all queries with predefined memory limits:
# Under 'benchmarks/' directory
cargo run --release --bin external_aggr -- benchmark -n 4 --iterations 3 -p '....../data/tpch_sf1' -o '/tmp/aggr.json'
  1. Run a query with specific memory limit:
cargo run --release --bin external_aggr -- benchmark -n 4 --iterations 3 -p '....../data/tpch_sf1' -o '/tmp/aggr.json' --query 1 --memory-limit 30M
  1. Run all queries with bench.sh script:
./bench.sh data external_aggr
./bench.sh run external_aggr

Older Benchmarks

h2o benchmarks

cargo run --release --bin h2o group-by --query 1 --path /mnt/bigdata/h2oai/N_1e7_K_1e2_single.csv --mem-table --debug

Example run:

Running benchmarks with the following options: GroupBy(GroupBy { query: 1, path: "/mnt/bigdata/h2oai/N_1e7_K_1e2_single.csv", debug: false })
Executing select id1, sum(v1) as v1 from x group by id1
+-------+--------+
| id1   | v1     |
+-------+--------+
| id063 | 199420 |
| id094 | 200127 |
| id044 | 198886 |
...
| id093 | 200132 |
| id003 | 199047 |
+-------+--------+

h2o groupby query 1 took 1669 ms