forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexternal_aggr.rs
385 lines (332 loc) · 12.7 KB
/
external_aggr.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! external_aggr binary entrypoint
use std::collections::HashMap;
use std::path::PathBuf;
use std::sync::Arc;
use std::sync::OnceLock;
use structopt::StructOpt;
use arrow::record_batch::RecordBatch;
use arrow::util::pretty;
use datafusion::datasource::file_format::parquet::ParquetFormat;
use datafusion::datasource::listing::{
ListingOptions, ListingTable, ListingTableConfig, ListingTableUrl,
};
use datafusion::datasource::{MemTable, TableProvider};
use datafusion::error::Result;
use datafusion::execution::memory_pool::FairSpillPool;
use datafusion::execution::memory_pool::{human_readable_size, units};
use datafusion::execution::runtime_env::RuntimeConfig;
use datafusion::physical_plan::display::DisplayableExecutionPlan;
use datafusion::physical_plan::{collect, displayable};
use datafusion::prelude::*;
use datafusion_benchmarks::util::{BenchmarkRun, CommonOpt};
use datafusion_common::instant::Instant;
use datafusion_common::{exec_datafusion_err, exec_err, DEFAULT_PARQUET_EXTENSION};
#[derive(Debug, StructOpt)]
#[structopt(
name = "datafusion-external-aggregation",
about = "DataFusion external aggregation benchmark"
)]
enum ExternalAggrOpt {
Benchmark(ExternalAggrConfig),
}
#[derive(Debug, StructOpt)]
struct ExternalAggrConfig {
/// Query number. If not specified, runs all queries
#[structopt(short, long)]
query: Option<usize>,
/// Memory limit (e.g. '100M', '1.5G'). If not specified, run all pre-defined memory limits for given query.
#[structopt(long)]
memory_limit: Option<String>,
/// Common options
#[structopt(flatten)]
common: CommonOpt,
/// Path to data files (lineitem). Only parquet format is supported
#[structopt(parse(from_os_str), required = true, short = "p", long = "path")]
path: PathBuf,
/// Load the data into a MemTable before executing the query
#[structopt(short = "m", long = "mem-table")]
mem_table: bool,
/// Path to JSON benchmark result to be compare using `compare.py`
#[structopt(parse(from_os_str), short = "o", long = "output")]
output_path: Option<PathBuf>,
}
struct QueryResult {
elapsed: std::time::Duration,
row_count: usize,
}
/// Query Memory Limits
/// Map query id to predefined memory limits
///
/// Q1 requires 36MiB for aggregation
/// Memory limits to run: 64MiB, 32MiB, 16MiB
/// Q2 requires 250MiB for aggregation
/// Memory limits to run: 512MiB, 256MiB, 128MiB, 64MiB, 32MiB
static QUERY_MEMORY_LIMITS: OnceLock<HashMap<usize, Vec<u64>>> = OnceLock::new();
impl ExternalAggrConfig {
const AGGR_TABLES: [&'static str; 1] = ["lineitem"];
const AGGR_QUERIES: [&'static str; 2] = [
// Q1: Output size is ~25% of lineitem table
r#"
SELECT count(*)
FROM (
SELECT DISTINCT l_orderkey
FROM lineitem
)
"#,
// Q2: Output size is ~99% of lineitem table
r#"
SELECT count(*)
FROM (
SELECT DISTINCT l_orderkey, l_suppkey
FROM lineitem
)
"#,
];
fn init_query_memory_limits() -> &'static HashMap<usize, Vec<u64>> {
use units::*;
QUERY_MEMORY_LIMITS.get_or_init(|| {
let mut map = HashMap::new();
map.insert(1, vec![64 * MB, 32 * MB, 16 * MB]);
map.insert(2, vec![512 * MB, 256 * MB, 128 * MB, 64 * MB, 32 * MB]);
map
})
}
/// If `--query` and `--memory-limit` is not speicified, run all queries
/// with pre-configured memory limits
/// If only `--query` is specified, run the query with all memory limits
/// for this query
/// If both `--query` and `--memory-limit` are specified, run the query
/// with the specified memory limit
pub async fn run(&self) -> Result<()> {
let mut benchmark_run = BenchmarkRun::new();
let memory_limit = match &self.memory_limit {
Some(limit) => Some(Self::parse_memory_limit(limit)?),
None => None,
};
let query_range = match self.query {
Some(query_id) => query_id..=query_id,
None => 1..=Self::AGGR_QUERIES.len(),
};
// Each element is (query_id, memory_limit)
// e.g. [(1, 64_000), (1, 32_000)...] means first run Q1 with 64KiB
// memory limit, next run Q1 with 32KiB memory limit, etc.
let mut query_executions = vec![];
// Setup `query_executions`
for query_id in query_range {
if query_id > Self::AGGR_QUERIES.len() {
return exec_err!(
"Invalid '--query'(query number) {} for external aggregation benchmark.",
query_id
);
}
match memory_limit {
Some(limit) => {
query_executions.push((query_id, limit));
}
None => {
let memory_limits_table = Self::init_query_memory_limits();
let memory_limits = memory_limits_table.get(&query_id).unwrap();
for limit in memory_limits {
query_executions.push((query_id, *limit));
}
}
}
}
for (query_id, mem_limit) in query_executions {
benchmark_run.start_new_case(&format!(
"{query_id}({})",
human_readable_size(mem_limit as usize)
));
let query_results = self.benchmark_query(query_id, mem_limit).await?;
for iter in query_results {
benchmark_run.write_iter(iter.elapsed, iter.row_count);
}
}
benchmark_run.maybe_write_json(self.output_path.as_ref())?;
Ok(())
}
/// Benchmark query `query_id` in `AGGR_QUERIES`
async fn benchmark_query(
&self,
query_id: usize,
mem_limit: u64,
) -> Result<Vec<QueryResult>> {
let query_name =
format!("Q{query_id}({})", human_readable_size(mem_limit as usize));
let config = self.common.config();
let runtime_config = RuntimeConfig::new()
.with_memory_pool(Arc::new(FairSpillPool::new(mem_limit as usize)))
.build_arc()?;
let ctx = SessionContext::new_with_config_rt(config, runtime_config);
// register tables
self.register_tables(&ctx).await?;
let mut millis = vec![];
// run benchmark
let mut query_results = vec![];
for i in 0..self.iterations() {
let start = Instant::now();
let query_idx = query_id - 1; // 1-indexed -> 0-indexed
let sql = Self::AGGR_QUERIES[query_idx];
let result = self.execute_query(&ctx, sql).await?;
let elapsed = start.elapsed(); //.as_secs_f64() * 1000.0;
let ms = elapsed.as_secs_f64() * 1000.0;
millis.push(ms);
let row_count = result.iter().map(|b| b.num_rows()).sum();
println!(
"{query_name} iteration {i} took {ms:.1} ms and returned {row_count} rows"
);
query_results.push(QueryResult { elapsed, row_count });
}
let avg = millis.iter().sum::<f64>() / millis.len() as f64;
println!("{query_name} avg time: {avg:.2} ms");
Ok(query_results)
}
async fn register_tables(&self, ctx: &SessionContext) -> Result<()> {
for table in Self::AGGR_TABLES {
let table_provider = { self.get_table(ctx, table).await? };
if self.mem_table {
println!("Loading table '{table}' into memory");
let start = Instant::now();
let memtable =
MemTable::load(table_provider, Some(self.partitions()), &ctx.state())
.await?;
println!(
"Loaded table '{}' into memory in {} ms",
table,
start.elapsed().as_millis()
);
ctx.register_table(table, Arc::new(memtable))?;
} else {
ctx.register_table(table, table_provider)?;
}
}
Ok(())
}
async fn execute_query(
&self,
ctx: &SessionContext,
sql: &str,
) -> Result<Vec<RecordBatch>> {
let debug = self.common.debug;
let plan = ctx.sql(sql).await?;
let (state, plan) = plan.into_parts();
if debug {
println!("=== Logical plan ===\n{plan}\n");
}
let plan = state.optimize(&plan)?;
if debug {
println!("=== Optimized logical plan ===\n{plan}\n");
}
let physical_plan = state.create_physical_plan(&plan).await?;
if debug {
println!(
"=== Physical plan ===\n{}\n",
displayable(physical_plan.as_ref()).indent(true)
);
}
let result = collect(physical_plan.clone(), state.task_ctx()).await?;
if debug {
println!(
"=== Physical plan with metrics ===\n{}\n",
DisplayableExecutionPlan::with_metrics(physical_plan.as_ref())
.indent(true)
);
if !result.is_empty() {
// do not call print_batches if there are no batches as the result is confusing
// and makes it look like there is a batch with no columns
pretty::print_batches(&result)?;
}
}
Ok(result)
}
async fn get_table(
&self,
ctx: &SessionContext,
table: &str,
) -> Result<Arc<dyn TableProvider>> {
let path = self.path.to_str().unwrap();
// Obtain a snapshot of the SessionState
let state = ctx.state();
let path = format!("{path}/{table}");
let format = Arc::new(
ParquetFormat::default()
.with_options(ctx.state().table_options().parquet.clone()),
);
let extension = DEFAULT_PARQUET_EXTENSION;
let options = ListingOptions::new(format)
.with_file_extension(extension)
.with_collect_stat(state.config().collect_statistics());
let table_path = ListingTableUrl::parse(path)?;
let config = ListingTableConfig::new(table_path).with_listing_options(options);
let config = config.infer_schema(&state).await?;
Ok(Arc::new(ListingTable::try_new(config)?))
}
fn iterations(&self) -> usize {
self.common.iterations
}
fn partitions(&self) -> usize {
self.common.partitions.unwrap_or(num_cpus::get())
}
/// Parse memory limit from string to number of bytes
/// e.g. '1.5G', '100M' -> 1572864
fn parse_memory_limit(limit: &str) -> Result<u64> {
let (number, unit) = limit.split_at(limit.len() - 1);
let number: f64 = number.parse().map_err(|_| {
exec_datafusion_err!("Failed to parse number from memory limit '{}'", limit)
})?;
match unit {
"K" => Ok((number * 1024.0) as u64),
"M" => Ok((number * 1024.0 * 1024.0) as u64),
"G" => Ok((number * 1024.0 * 1024.0 * 1024.0) as u64),
_ => exec_err!("Unsupported unit '{}' in memory limit '{}'", unit, limit),
}
}
}
#[tokio::main]
pub async fn main() -> Result<()> {
env_logger::init();
match ExternalAggrOpt::from_args() {
ExternalAggrOpt::Benchmark(opt) => opt.run().await?,
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_parse_memory_limit_all() {
// Test valid inputs
assert_eq!(
ExternalAggrConfig::parse_memory_limit("100K").unwrap(),
102400
);
assert_eq!(
ExternalAggrConfig::parse_memory_limit("1.5M").unwrap(),
1572864
);
assert_eq!(
ExternalAggrConfig::parse_memory_limit("2G").unwrap(),
2147483648
);
// Test invalid unit
assert!(ExternalAggrConfig::parse_memory_limit("500X").is_err());
// Test invalid number
assert!(ExternalAggrConfig::parse_memory_limit("abcM").is_err());
}
}