Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RNN #421

Merged
merged 3 commits into from
Dec 19, 2020
Merged

RNN #421

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
247 changes: 247 additions & 0 deletions dl/RNN/.ipynb_checkpoints/RNN-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "zwzjFi8-CR4a"
},
"outputs": [],
"source": [
"import tensorflow as tf\r\n",
"from tensorflow.keras.models import Sequential\r\n",
"from tensorflow.keras.layers import Dense, Dropout, LSTM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yGzOxAAjCVld",
"outputId": "6a0e52cc-7071-4a64-ea60-a2801097915d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"11493376/11490434 [==============================] - 0s 0us/step\n"
]
}
],
"source": [
"mnist = tf.keras.datasets.mnist\r\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GjR_FRu3CYFa",
"outputId": "2ecd447c-79e0-44c4-93d3-0f52fad26eec"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(60000, 28, 28)\n"
]
}
],
"source": [
"print(x_train.shape)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "dW_UOayCCYy3"
},
"outputs": [],
"source": [
"# normalise data\r\n",
"x_train = x_train/255.0\r\n",
"x_test = x_test/255.0"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "Ev3eg2PcCYps"
},
"outputs": [],
"source": [
"model = Sequential()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "W7OnTS_UCYem"
},
"outputs": [],
"source": [
"model.add(LSTM(128, input_shape = (28, 28), activation='relu', return_sequences=True))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(LSTM(128, activation='relu'))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(Dense(32, activation='relu'))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(Dense(10, activation='softmax'))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-y_DlifKEVUu",
"outputId": "3bfb3e71-d4d8-4267-8d20-ce10c3b173d0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"lstm (LSTM) (None, 28, 128) 80384 \n",
"_________________________________________________________________\n",
"dropout (Dropout) (None, 28, 128) 0 \n",
"_________________________________________________________________\n",
"lstm_1 (LSTM) (None, 128) 131584 \n",
"_________________________________________________________________\n",
"dropout_1 (Dropout) (None, 128) 0 \n",
"_________________________________________________________________\n",
"dense (Dense) (None, 32) 4128 \n",
"_________________________________________________________________\n",
"dropout_2 (Dropout) (None, 32) 0 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 10) 330 \n",
"=================================================================\n",
"Total params: 216,426\n",
"Trainable params: 216,426\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "6O9qZ5WRCl2d"
},
"outputs": [],
"source": [
"optimizer = tf.keras.optimizers.Adam(lr=0.001, decay=0.00005)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "BMz_PlqqCn3Q"
},
"outputs": [],
"source": [
"model.compile(loss='sparse_categorical_crossentropy', \r\n",
" optimizer=optimizer,\r\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZGyzfMlYCq5e",
"outputId": "e755ae08-d56b-4fac-8abd-ae991363409d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"1875/1875 [==============================] - 101s 54ms/step - loss: 0.2994 - accuracy: 0.9152 - val_loss: 0.1330 - val_accuracy: 0.9612\n",
"Epoch 2/5\n",
"1875/1875 [==============================] - 99s 53ms/step - loss: 0.1400 - accuracy: 0.9634 - val_loss: 0.0844 - val_accuracy: 0.9764\n",
"Epoch 3/5\n",
"1875/1875 [==============================] - 102s 54ms/step - loss: 0.0969 - accuracy: 0.9743 - val_loss: 0.0621 - val_accuracy: 0.9812\n",
"Epoch 4/5\n",
"1875/1875 [==============================] - 100s 53ms/step - loss: 0.0791 - accuracy: 0.9793 - val_loss: 0.0698 - val_accuracy: 0.9811\n",
"Epoch 5/5\n",
"1875/1875 [==============================] - 99s 53ms/step - loss: 0.0643 - accuracy: 0.9830 - val_loss: 0.0502 - val_accuracy: 0.9850\n"
]
},
{
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x7f40fc0f4e80>"
]
},
"execution_count": 10,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"model.fit(x_train, y_train, epochs=5, \r\n",
" validation_data=(x_test, y_test))"
]
}
],
"metadata": {
"colab": {
"name": "RNN.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading