The Apache Iceberg Sink Connector for Kafka Connect is a sink connector for writing data from Kafka into Iceberg tables.
- Commit coordination for centralized Iceberg commits
- Exactly-once delivery semantics
- Multi-table fan-out
- Row mutations (update/delete rows), upsert mode
- Automatic table creation and schema evolution
- Field name mapping via Iceberg’s column mapping functionality
The Apache Iceberg Sink Connector is under active development, with early access builds available under Releases. You can build the connector zip archive yourself by running:
./gradlew -xtest clean build
The zip archive will be found under ./kafka-connect-runtime/build/distributions
.
Property | Description |
---|---|
iceberg.tables | Comma-separated list of destination tables |
iceberg.tables.dynamic-enabled | Set to true to route to a table specified in routeField instead of using routeRegex , default is false |
iceberg.tables.route-field | For multi-table fan-out, the name of the field used to route records to tables |
iceberg.tables.default-commit-branch | Default branch for commits, main is used if not specified |
iceberg.tables.default-id-columns | Default comma-separated list of columns that identify a row in tables (primary key) |
iceberg.tables.default-partition-by | Default comma-separated list of partition fields to use when creating tables |
iceberg.tables.cdc-field | Name of the field containing the CDC operation, I , U , or D , default is none |
iceberg.tables.upsert-mode-enabled | Set to true to enable upsert mode, default is false |
iceberg.tables.auto-create-enabled | Set to true to automatically create destination tables, default is false |
iceberg.tables.evolve-schema-enabled | Set to true to add any missing record fields to the table schema, default is false |
iceberg.tables.schema-force-optional | Set to true to set columns as optional during table create and evolution, default is false to respect schema |
iceberg.tables.schema-case-insensitive | Set to true to look up table columns by case-insensitive name, default is false for case-sensitive |
iceberg.tables.auto-create-props.* | Properties set on new tables during auto-create |
iceberg.tables.write-props.* | Properties passed through to Iceberg writer initialization, these take precedence |
iceberg.table.<table name>.commit-branch | Table-specific branch for commits, use iceberg.tables.default-commit-branch if not specified |
iceberg.table.<table name>.id-columns | Comma-separated list of columns that identify a row in the table (primary key) |
iceberg.table.<table name>.partition-by | Comma-separated list of partition fields to use when creating the table |
iceberg.table.<table name>.route-regex | The regex used to match a record's routeField to a table |
iceberg.control.topic | Name of the control topic, default is control-iceberg |
iceberg.control.group-id | Name of the consumer group to store offsets, default is cg-control-<connector name> |
iceberg.control.commit.interval-ms | Commit interval in msec, default is 300,000 (5 min) |
iceberg.control.commit.timeout-ms | Commit timeout interval in msec, default is 30,000 (30 sec) |
iceberg.control.commit.threads | Number of threads to use for commits, default is (cores * 2) |
iceberg.catalog | Name of the catalog, default is iceberg |
iceberg.catalog.* | Properties passed through to Iceberg catalog initialization |
iceberg.hadoop-conf-dir | If specified, Hadoop config files in this directory will be loaded |
iceberg.hadoop.* | Properties passed through to the Hadoop configuration |
iceberg.kafka.* | Properties passed through to control topic Kafka client initialization |
If iceberg.tables.dynamic-enabled
is false
(the default) then you must specify iceberg.tables
. If
iceberg.tables.dynamic-enabled
is true
then you must specify iceberg.tables.route-field
which will
contain the name of the table. Enabling iceberg.tables.upsert-mode-enabled
will cause all appends to be
preceded by an equality delete. Both CDC and upsert mode require an Iceberg V2 table with identity fields
defined.
By default the connector will attempt to use Kafka client config from the worker properties for connecting to
the control topic. If that config cannot be read for some reason, Kafka client settings
can be set explicitly using iceberg.kafka.*
properties.
Source topic offsets are stored in two different consumer groups. The first is the sink-managed consumer
group defined by the iceberg.control.group-id
property. The second is the Kafka Connect managed
consumer group which is named connect-<connector name>
by default. The sink-managed consumer
group is used by the sink to achieve exactly-once processing. The Kafka Connect consumer group is
only used as a fallback if the sink-managed consumer group is missing. To reset the offsets,
both consumer groups need to be reset.
Messages should be converted to a struct or map using the appropriate Kafka Connect converter.
The iceberg.catalog.*
properties are required for connecting to the Iceberg catalog. The core catalog
types are included in the default distribution, including REST, Glue, DynamoDB, Hadoop, Nessie,
JDBC, and Hive. JDBC drivers are not included in the default distribution, so you will need to include
those if needed. When using a Hive catalog, you can use the distribution that includes the Hive metastore client,
otherwise you will need to include that yourself.
To set the catalog type, you can set iceberg.catalog.type
to rest
, hive
, or hadoop
. For other
catalog types, you need to instead set iceberg.catalog.catalog-impl
to the name of the catalog class.
"iceberg.catalog.type": "rest",
"iceberg.catalog.uri": "https://catalog-service",
"iceberg.catalog.credential": "<credential>",
"iceberg.catalog.warehouse": "<warehouse>",
NOTE: Use the distribution that includes the HMS client (or include the HMS client yourself). Use S3FileIO
when
using S3 for storage (the default is HadoopFileIO
with HiveCatalog
).
"iceberg.catalog.type": "hive",
"iceberg.catalog.uri": "thrift://hive:9083",
"iceberg.catalog.io-impl": "org.apache.iceberg.aws.s3.S3FileIO",
"iceberg.catalog.warehouse": "s3a://bucket/warehouse",
"iceberg.catalog.client.region": "us-east-1",
"iceberg.catalog.s3.access-key-id": "<AWS access>",
"iceberg.catalog.s3.secret-access-key": "<AWS secret>",
"iceberg.catalog.catalog-impl": "org.apache.iceberg.aws.glue.GlueCatalog",
"iceberg.catalog.warehouse": "s3a://bucket/warehouse",
"iceberg.catalog.io-impl": "org.apache.iceberg.aws.s3.S3FileIO",
"iceberg.catalog.catalog-impl": "org.apache.iceberg.nessie.NessieCatalog",
"iceberg.catalog.uri": "http://localhost:19120/api/v1",
"iceberg.catalog.ref": "main",
"iceberg.catalog.warehouse": "s3a://bucket/warehouse",
"iceberg.catalog.io-impl": "org.apache.iceberg.aws.s3.S3FileIO",
Depending on your setup, you may need to also set iceberg.catalog.s3.endpoint
, iceberg.catalog.s3.staging-dir
,
or iceberg.catalog.s3.path-style-access
. See the Iceberg docs for
full details on configuring catalogs.
When using HDFS or Hive, the sink will initialize the Hadoop configuration. First, config files
from the classpath are loaded. Next, if iceberg.hadoop-conf-dir
is specified, config files
are loaded from that location. Finally, any iceberg.hadoop.*
properties from the sink config are
applied. When merging these, the order of precedence is sink config > config dir > classpath.
This assumes the source topic already exists and is named events
.
If your Kafka cluster has auto.create.topics.enable
set to true
(the default), then the control topic will be automatically created. If not, then you will need to create the topic first. The default topic name is control-iceberg
:
bin/kafka-topics \
--command-config command-config.props \
--bootstrap-server ${CONNECT_BOOTSTRAP_SERVERS} \
--create \
--topic control-iceberg \
--partitions 1
NOTE: Clusters running on Confluent Cloud have auto.create.topics.enable
set to false
by default.
Configuration properties with the prefix iceberg.catalog.
will be passed to Iceberg catalog initialization.
See the Iceberg docs for details on how to configure
a particular catalog.
This example writes all incoming records to a single table.
CREATE TABLE default.events (
id STRING,
type STRING,
ts TIMESTAMP,
payload STRING)
PARTITIONED BY (hours(ts))
This example config connects to a Iceberg REST catalog.
{
"name": "events-sink",
"config": {
"connector.class": "io.tabular.iceberg.connect.IcebergSinkConnector",
"tasks.max": "2",
"topics": "events",
"iceberg.tables": "default.events",
"iceberg.catalog.type": "rest",
"iceberg.catalog.uri": "https://localhost",
"iceberg.catalog.credential": "<credential>",
"iceberg.catalog.warehouse": "<warehouse name>"
}
}
This example writes records with type
set to list
to the table default.events_list
, and
writes records with type
set to create
to the table default.events_create
. Other records
will be skipped.
CREATE TABLE default.events_list (
id STRING,
type STRING,
ts TIMESTAMP,
payload STRING)
PARTITIONED BY (hours(ts));
CREATE TABLE default.events_create (
id STRING,
type STRING,
ts TIMESTAMP,
payload STRING)
PARTITIONED BY (hours(ts));
{
"name": "events-sink",
"config": {
"connector.class": "io.tabular.iceberg.connect.IcebergSinkConnector",
"tasks.max": "2",
"topics": "events",
"iceberg.tables": "default.events_list,default.events_create",
"iceberg.tables.route-field": "type",
"iceberg.table.default.events_list.route-regex": "list",
"iceberg.table.default.events_create.route-regex": "create",
"iceberg.catalog.type": "rest",
"iceberg.catalog.uri": "https://localhost",
"iceberg.catalog.credential": "<credential>",
"iceberg.catalog.warehouse": "<warehouse name>"
}
}
This example writes to tables with names from the value in the db_table
field. If a table with
the name does not exist, then the record will be skipped. For example, if the record's db_table
field is set to default.events_list
, then the record is written to the default.events_list
table.
See above for creating two tables.
{
"name": "events-sink",
"config": {
"connector.class": "io.tabular.iceberg.connect.IcebergSinkConnector",
"tasks.max": "2",
"topics": "events",
"iceberg.tables.dynamic-enabled": "true",
"iceberg.tables.route-field": "db_table",
"iceberg.catalog.type": "rest",
"iceberg.catalog.uri": "https://localhost",
"iceberg.catalog.credential": "<credential>",
"iceberg.catalog.warehouse": "<warehouse name>"
}
}
This example applies inserts, updates, and deletes based on the value of a field in the record.
For example, if the _cdc_op
field is set to I
then the record is inserted, if U
then it is
upserted, and if D
then it is deleted. This requires that the table be in Iceberg v2 format.
The Iceberg identifier field(s) are used to identify a row, if that is not set for the table,
then the iceberg.tables.id-columns
configuration can be set instead. CDC can be combined with
multi-table fan-out.
See above for creating the table
{
"name": "events-sink",
"config": {
"connector.class": "io.tabular.iceberg.connect.IcebergSinkConnector",
"tasks.max": "2",
"topics": "events",
"iceberg.tables": "default.events",
"iceberg.tables.cdc-field": "_cdc_op",
"iceberg.catalog.type": "rest",
"iceberg.catalog.uri": "https://localhost",
"iceberg.catalog.credential": "<credential>",
"iceberg.catalog.warehouse": "<warehouse name>"
}
}