-
Notifications
You must be signed in to change notification settings - Fork 20
Integration with transformers and vLLM #170
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
|
Important Review skippedDraft detected. Please check the settings in the CodeRabbit UI or the You can disable this status message by setting the Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
Summary of ChangesHello @sfc-gh-goliaro, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed! This pull request significantly expands the capabilities of Highlights
🧠 New Feature in Public Preview: You can now enable Memory to help Gemini Code Assist learn from your team's feedback. This makes future code reviews more consistent and personalized to your project's style. Click here to enable Memory in your admin console. Using Gemini Code AssistThe full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips. Invoking Gemini You can request assistance from Gemini at any point by creating a comment using either
Customization To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a Limitations & Feedback Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here. You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension. Footnotes
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Code Review
This pull request introduces a comprehensive integration with the Hugging Face Transformers library, enabling the tracing of various LLM operations within flashinfer-bench. The changes include new adapter modules for attention, RMSNorm, RoPE, embedding, activation, MoE, and sampling functions, along with corresponding definition files for several LLaMA, Qwen, and GPT-OSS models. New utility scripts (run_all_traces.sh, trace_models.py, verify_traces.py) are added to facilitate tracing and verification, and the .gitignore file is updated to exclude test output. The implementation demonstrates a robust approach to patching and workload collection, including support for quantized data types like FP8 and MXFP4. Overall, this is a significant and well-executed feature addition.
No description provided.