Skip to content

Commit

Permalink
docs: make llms and embeddings explicit (#1553)
Browse files Browse the repository at this point in the history
  • Loading branch information
jjmachan authored Oct 22, 2024
1 parent 6e225ca commit 30e389b
Show file tree
Hide file tree
Showing 4 changed files with 33 additions and 8 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,11 @@

```python
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o"))
evaluator_embeddings = LangchainEmbeddingsWrapper(OpenAIEmbeddings())
```


Expand All @@ -44,14 +47,22 @@

```python
from langchain_aws import ChatBedrockConverse
from langchain_aws import BedrockEmbeddings
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper

evaluator_llm = LangchainLLMWrapper(ChatBedrockConverse(
credentials_profile_name=config["credentials_profile_name"],
region_name=config["region_name"],
base_url=f"https://bedrock-runtime.{config['region_name']}.amazonaws.com",
model=config["llm"],
temperature=config["temperature"],
))
evaluator_embeddings = LangchainEmbeddingsWrapper(BedrockEmbeddings(
credentials_profile_name=config["credentials_profile_name"],
region_name=config["region_name"],
model_id=config["embeddings"],
))
```

If you want more information on how to use other AWS services, please refer to the [langchain-aws](https://python.langchain.com/docs/integrations/providers/aws/) documentation.
10 changes: 10 additions & 0 deletions docs/extra/components/choose_generator_llm.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,9 @@
```python
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
generator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o"))
generator_embeddings = LangchainEmbeddingsWrapper(OpenAIEmbeddings())
```


Expand All @@ -44,14 +46,22 @@

```python
from langchain_aws import ChatBedrockConverse
from langchain_aws import BedrockEmbeddings
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper

generator_llm = LangchainLLMWrapper(ChatBedrockConverse(
credentials_profile_name=config["credentials_profile_name"],
region_name=config["region_name"],
base_url=f"https://bedrock-runtime.{config['region_name']}.amazonaws.com",
model=config["llm"],
temperature=config["temperature"],
))
generator_embeddings = LangchainEmbeddingsWrapper(BedrockEmbeddings(
credentials_profile_name=config["credentials_profile_name"],
region_name=config["region_name"],
model_id=config["embeddings"],
))
```

If you want more information on how to use other AWS services, please refer to the [langchain-aws](https://python.langchain.com/docs/integrations/providers/aws/) documentation.
11 changes: 8 additions & 3 deletions docs/getstarted/rag_evaluation.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,15 +33,20 @@ Since all of the metrics we have chosen are LLM-based metrics, we need to choose
### Choosing evaluator LLM

--8<--
choose_evaluvator_llm.md
choose_evaluator_llm.md
--8<--


### Running Evaluation

```python
metrics = [LLMContextRecall(), FactualCorrectness(), Faithfulness()]
results = evaluate(dataset=eval_dataset, metrics=metrics, llm=evaluator_llm,)
metrics = [
LLMContextRecall(llm=evaluator_llm),
FactualCorrectness(llm=evaluator_llm),
Faithfulness(llm=evaluator_llm),
SemanticSimilarity(embeddings=evaluator_embeddings)
]
results = evaluate(dataset=eval_dataset, metrics=metrics)
```

### Exporting and analyzing results
Expand Down
9 changes: 4 additions & 5 deletions docs/getstarted/rag_testset_generation.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,12 +101,11 @@ But you can mix and match transforms or build your own as needed.
```python
from ragas.testset.transforms import default_transforms

# choose your LLM and Embedding Model
from ragas.llms import llm_factory
from ragas.embeddings import embedding_factory

transformer_llm = llm_factory("gpt-4o")
embedding_model = embedding_factory("text-embedding-3-large")
# define your LLM and Embedding Model
# here we are using the same LLM and Embedding Model that we used to generate the testset
transformer_llm = generator_llm
embedding_model = generator_embeddings

trans = default_transforms(llm=transformer_llm, embedding_model=embedding_model)
apply_transforms(kg, trans)
Expand Down

0 comments on commit 30e389b

Please sign in to comment.