Skip to content

MB-Forensic project is a forensic watermarking automation process running on Azure cloud to apply watermarking on Azure Media Services (AMS) Assets.

License

Notifications You must be signed in to change notification settings

eventive-org/MB-ForensicWatermark

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

MB-Forensic project is a forensic watermarking automation process running on Azure cloud to apply watermarking on Azure Media Services (AMS) Assets.

MB-Forensic is composed by a orchestrate (Logic App), Actions (Azure Functions) and watermarker container on Kubernetes cluster. The process are expose by REST APIs making easy integration with existing MAM or workflows managers.

General diagram

Getting Started

Installation, build and Test process

MB-Forensic installation process is divided on 2 main sub systems

a. Azure Container Service. Details steps are describe on k8s\readme.md

b. Logic Apps and Functions. Details steps are describe on ForensicWaterMark\readme.md file.

API references

MB-Forensic expose 2 simple RESP API to apply watermarking on AMS assets.

Start watermark Job

Start a new watermark job using UnifiedProcess Logic App.

Request URL

a. https: //{Logic App Endpoint}.logic.azure.com:443/workflows/{Logic App ID}}/triggers/manual/paths/invoke?api-version=2016-06-01&sp=%2Ftriggers%2Fmanual%2Frun&sv=1.0&sig={Logic App KEY}

Request Headers

a. Content-Type: application/json

Request Body

POST CALL to CallBack URL specifying AssetId of original Assset and EmbebedCodes list. Each code on the list will produce a new Asset copy on AMS.

a. AssetId: AMS Asset ID string . b. EmbebedCodes: Text list of HEX codes.

{
  "AssetId": "nb:cid:UUID:79d815cc-5cbe-4a99-add9-c74eeeeb596a",
  "EmbebedCodes": 
    [
    	"0x1ADE29"
    ]

}

Response Body

As response you will receive JOB status information.

{
    "AssetStatus": {
        "AssetId": "nb:cid:UUID:ecda4e79-f800-44de-9fd5-562de140c7c7",
        "State": "Running"
    },
    "JobStatus": {
        "JobID": "08586993026535557503409978660",
        "State": "Running",
        "Details": "Queue",
        "StartTime": "2017-08-09T18:43:54.0835878+00:00",
        "FinishTime": null,
        "Duration": null,
        "EmbebedCodeList": [
            "0x1ADE29"
        ]
    },
    "EmbebedCodesList": [
        {
            "EmbebedCodeValue": "0x1ADE29",
            "State": "Running",
            "ParentAssetID": "nb:cid:UUID:ecda4e79-f800-44de-9fd5-562de140c7c7",
            "AssetID": "",
            "Details": "Just Start"
        }
    ]
}

Watermark Process Status

Provide job status

Request URL

https: //{your Azure Function endpoint }.azurewebsites.net/api/GetUnifiedProcessStatus?code={your Azure Function Key}

Request Headers

a. Content-Type: application/json

Request Body

Same Azure Asset ID and JobID obtained on preview call response.

a. AssetId: AMS Asset ID string. b. JobID: Job Id string.

{
	"AssetId": "nb:cid:UUID:ecda4e79-f800-44de-9fd5-562de140c7c7",
	"JobID": "08586993026535557503409978660"
}

Response Body

Job Status information.

{
    "AssetStatus": {
        "AssetId": "UUID:ecda4e79-f800-44de-9fd5-562de140c7c7",
        "State": "Finished"
    },
    "JobStatus": {
        "JobID": "08586993026535557503409978660",
        "State": "Finished",
        "Details": "Finished",
        "StartTime": "2017-08-31T16:12:28.1453138Z",
        "FinishTime": "2017-08-31T16:16:02.9693522Z",
        "Duration": "00:03:34.8240384",
        "EmbebedCodeList": [
            "0x2ADA06"
        ]
    },
    "EmbebedCodesList": [
        {
            "EmbebedCodeValue": "0x1ADE29",
            "State": "Finished",
            "ParentAssetID": "nb:cid:UUID:79d815cc-5cbe-4a99-add9-c74eeeeb596a",
            "AssetID": "nb:cid:UUID:7dda66cd-4d12-4f85-94ae-98dbfc516f86",
            "Details": "Ready 5 of 5"
        }
    ]
}

a. AssetStatus

  1. AssetId: Asset ID from original ASM asset.
  2. State: Status of Asset, Finished means ready to embedded code on new MP4 copies.

b. JobStatus: Job information.

  1. JobID: id of job, same on Logic App run instance id.
  2. State: Finished, Running, Failed.
  3. Details: state context information.
  4. StartTime: Job started date and time.
  5. FinishTime: Job finished date and time.
  6. Duration: Job duration.
  7. EmbebedCodeList: Embedded code list.

c. EmbebedCodesList: Individual code status

  1. EmbebedCodeValue: embedded code.
  2. State: Finished, Running, Failed.
  3. ParentAssetID: Original AMS asset ID
  4. AssetID: new watermarked copy AMS asset ID.
  5. Details: state context information.

Reporting issues and feedback

If you encounter any bugs with the tool please file an issue in the Issues section of our GitHub repo.

Contribute

MB-Forensic has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

License

MB-Forensic is licensed under the MIT License.

About

MB-Forensic project is a forensic watermarking automation process running on Azure cloud to apply watermarking on Azure Media Services (AMS) Assets.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 93.4%
  • Shell 3.4%
  • PowerShell 3.2%