Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Record training loss #539

Merged
merged 4 commits into from
Jun 24, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 29 additions & 31 deletions modyn/common/grpc/grpc_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,40 +216,38 @@ def prepare_start_training_request(

grad_scaler_config = training_config.grad_scaler_config if training_config.grad_scaler_config else {}

start_training_kwargs = {
"pipeline_id": pipeline_id,
"trigger_id": trigger_id,
"device": training_config.device,
"use_pretrained_model": previous_model_id is not None,
"pretrained_model_id": previous_model_id or -1,
"load_optimizer_state": False, # TODO(#137): Think about this.
"batch_size": training_config.batch_size,
"torch_optimizers_configuration": TrainerServerJsonString(value=json.dumps(optimizers_config)),
"torch_criterion": training_config.optimization_criterion.name,
"criterion_parameters": TrainerServerJsonString(value=criterion_config),
"data_info": Data(
return StartTrainingRequest(
pipeline_id=pipeline_id,
trigger_id=trigger_id,
device=training_config.device,
use_pretrained_model=previous_model_id is not None,
pretrained_model_id=previous_model_id or -1,
load_optimizer_state=False, # TODO(#137): Think about this.
batch_size=training_config.batch_size,
torch_optimizers_configuration=TrainerServerJsonString(value=json.dumps(optimizers_config)),
torch_criterion=training_config.optimization_criterion.name,
criterion_parameters=TrainerServerJsonString(value=criterion_config),
data_info=Data(
dataset_id=data_config.dataset_id,
num_dataloaders=training_config.dataloader_workers,
),
"checkpoint_info": checkpoint_info,
"transform_list": data_config.transformations,
"bytes_parser": PythonString(value=data_config.bytes_parser_function),
"label_transformer": PythonString(value=data_config.label_transformer_function),
"lr_scheduler": TrainerServerJsonString(value=json.dumps(lr_scheduler_configs)),
"grad_scaler_configuration": TrainerServerJsonString(value=json.dumps(grad_scaler_config)),
"epochs_per_trigger": training_config.epochs_per_trigger,
"num_prefetched_partitions": training_config.num_prefetched_partitions,
"parallel_prefetch_requests": training_config.parallel_prefetch_requests,
"seed": training_config.seed,
"tokenizer": PythonString(value=tokenizer) if tokenizer is not None else None,
"num_samples_to_pass": num_samples_to_pass,
"shuffle": training_config.shuffle,
"enable_accurate_gpu_measurements": training_config.enable_accurate_gpu_measurements,
}

cleaned_kwargs: dict[str, Any] = {k: v for k, v in start_training_kwargs.items() if v is not None}

return StartTrainingRequest(**cleaned_kwargs)
checkpoint_info=checkpoint_info,
transform_list=data_config.transformations,
bytes_parser=PythonString(value=data_config.bytes_parser_function),
label_transformer=PythonString(value=data_config.label_transformer_function),
lr_scheduler=TrainerServerJsonString(value=json.dumps(lr_scheduler_configs)),
grad_scaler_configuration=TrainerServerJsonString(value=json.dumps(grad_scaler_config)),
epochs_per_trigger=training_config.epochs_per_trigger,
num_prefetched_partitions=training_config.num_prefetched_partitions,
parallel_prefetch_requests=training_config.parallel_prefetch_requests,
seed=training_config.seed, # seed is an optional field which can accept None
# tokenizer is an optional field which can accept None
tokenizer=PythonString(value=tokenizer) if tokenizer is not None else None,
num_samples_to_pass=num_samples_to_pass if num_samples_to_pass is not None else 0,
shuffle=training_config.shuffle,
enable_accurate_gpu_measurements=training_config.enable_accurate_gpu_measurements,
record_loss_every=training_config.record_loss_every,
)

def start_training(
self,
Expand Down
4 changes: 4 additions & 0 deletions modyn/config/schema/pipeline/training/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,10 @@ class TrainingConfig(ModynBaseModel):
description="The ID of the model that should be used as the initial model.",
)
checkpointing: CheckpointingConfig = Field(description="Configuration of checkpointing during training")
record_loss_every: int = Field(
default=0,
description="Record the training loss in the trainer_log very n-th batch/step. If 0, loss is not recorded.",
)
optimizers: List[OptimizerConfig] = Field(
description="An array of the optimizers for the training",
min_length=1,
Expand Down
1 change: 1 addition & 0 deletions modyn/protos/trainer_server.proto
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ message StartTrainingRequest {
int64 num_samples_to_pass = 23;
bool shuffle = 24;
bool enable_accurate_gpu_measurements = 25;
int64 record_loss_every = 26;
}

message StartTrainingResponse {
Expand Down
3 changes: 3 additions & 0 deletions modyn/tests/common/grpc/test_grpc_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,8 @@ def test_prepare_start_training_request(
# for bool value False is the default value so we don't need to test it
pipeline_training_config.shuffle = True
pipeline_training_config.enable_accurate_gpu_measurements = True
# for int value 0 is the default value so we don't need to test it
pipeline_training_config.record_loss_every = 10
pipeline_training_config.optimization_criterion.config = {"key": "value"}
pipeline_training_config.use_previous_model = previous_model_id is not None

Expand Down Expand Up @@ -136,6 +138,7 @@ def test_prepare_start_training_request(
assert req.num_samples_to_pass == (num_samples_to_pass if num_samples_to_pass is not None else 0)
assert req.shuffle
assert req.enable_accurate_gpu_measurements
assert req.record_loss_every == 10


@patch("modyn.common.grpc.grpc_helpers.grpc_connection_established", return_value=True)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -728,6 +728,8 @@ def test_train(
status = status_queue.get()
assert status["num_batches"] == 0
assert status["num_samples"] == 0
# we didn't enable recording the training loss
assert len(trainer._log["training_loss"]) == 0
status_state = torch.load(io.BytesIO(status_queue.get()))
checkpointed_state = {
"model": OrderedDict(
Expand Down
36 changes: 18 additions & 18 deletions modyn/trainer_server/internal/grpc/generated/trainer_server_pb2.py

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading
Loading